

SCHOOL OF CIVIL ENGINEERING

HANDBOOK

M. Tech. in Computer Aided Structural Engineering

2022-24

Rukmini Knowledge Park,

Rukmini Educational Charitable Trust

Kattigenahalli, Yelahanka, Bangalore - 560 064

Phone No: +91-080-66226622, Fax: 080-28478539

www.reva.edu.in

Chancellor's Message

"Education is the most powerful weapon which you can use to change the world."

- Nelson Mandela.

There was a time when survival depended on just the realization of physiological needs. We are indeed privileged to exist in a time when 'intellectual gratification' has become indispensable. Information is easily attainable for the soul that is curious enough to go look for it. Technological boons enable information availability anywhere anytime. The difference, however, lies between those who look for information and those who look for knowledge.

It is deemed virtuous to serve seekers of knowledge and as educators it is in the ethos at REVA University to empower every learner who chooses to enter our portals. Driven by our founding philosophy of 'Knowledge is power', we believe in building a community of perpetual learners by enabling them to look beyond their abilities and achieve what they assumed impossible.

India has always been beheld as a brewing pot of unbelievable talent, acute intellect and immense potential. All it takes to turn those qualities into power is a spark of opportunity. Being at a University is an exciting and rewarding experience with opportunities to nurture abilities, challenge cognizance and gain competence.

For any University, the structure of excellence lies in the transitional abilities of its faculty and its facility. I'm always in awe of the efforts that our academic board puts in to develop the team of subject matter experts at REVA. My faculty colleagues understand our core vision of empowering our future generation to be ethically, morally and intellectually elite. They practice the art of teaching with a student-centric and transformational approach. The excellent infrastructure at the University, both educational and extra-curricular, magnificently demonstrates the importance of ambience in facilitating focused learning for our students.

A famous British politician and author from the 19th century - Benjamin Disraeli, once said 'A University should be a place of light, of liberty and of learning'. Centuries later this dictum still inspires me and I believe, it takes team-work to build successful institutions. I welcome you to REVA University to join hands in laying the foundation of your future with values, wisdom and knowledge.

Dr. P. Shyama Raju

The Founder and Hon'ble Chancellor, REVA University

Vice-Chancellor's Message

The last two decades have seen a remarkable growth in higher education in India and across the globe. The move towards inter-disciplinary studies and interactive learning have opened up several options as well as created multiple challenges. India is at a juncture where a huge population of young crowd is opting for higher education. With the tremendous growth of privatization of education in India, the major focus is on creating a platform for quality in knowledge enhancement and bridging the gap between academia and industry.

A strong believer and practitioner of the dictum "Knowledge is Power",

REVA University has been on the path of delivering quality education by developing the young human resources on the foundation of ethical and moral values, while boosting their leadership qualities, research culture and innovative skills. Built on a sprawling 45 acres of green campus, this 'temple of learning' has excellent and state-of-the-art infrastructure facilities conducive to higher teaching-learning environment and research. The main objective of the University is to provide higher education of global standards and hence, all the programs are designed to meet international standards. Highly experienced and qualified faculty members, continuously engaged in the maintenance and enhancement of student-centric learning environment through innovative pedagogy, form the backbone of the University.

All the programs offered by REVA University follow the Choice Based Credit System (CBCS) with Outcome Based Approach. The flexibility in the curriculum has been designed with industry-specific goals in mind and the educator enjoys complete freedom to appropriate the syllabus by incorporating the latest knowledge and stimulating the creative minds of the students. Bench marked with the course of studies of various institutions of repute, our curriculum is extremely contemporary and is a culmination of efforts of great think-tanks - a large number of faculty members, experts from industries and research level organizations. The evaluation mechanism employs continuous assessment with grade point averages. We believe sincerely that it will meet the aspirations of all stakeholders – students, parents and the employers of the graduates and postgraduates of Reva University.

At REVA University, research, consultancy and innovation are regarded as our pillars of success. Most of the faculty members of the University are involved in research by attracting funded projects from various research level organizations like DST, VGST, DBT, DRDO, AICTE and industries. The outcome of the research is passed on to students through live projects from industries. The entrepreneurial zeal of the students is encouraged and nurtured through EDPs and EACs.

REVA University has entered into collaboration with many prominent industries to bridge the gap between industry and University. Regular visits to industries and mandatory internship with industries have helped our students become skilled with relevant to industry requirements. Structured training programs on soft-skills and preparatory training for competitive exams are offered here to make students more employable. 100% placement of eligible students speaks the effectiveness of these programs. The entrepreneurship development activities and

Establishment of "Technology Incubation Centres" in the University extend full support to the budding entrepreneurs to nurture their ideas and establish an enterprise.

With firm faith in the saying, "Intelligence plus character –that is the goal of education" (Martin Luther King, Jr.), I strongly believe REVA University is marching ahead in the right direction, providing a holistic education to the future generation and playing a positive role in nation building. We reiterate our endeavour to provide premium quality education accessible to all and an environment for the growth of over-all personality development leading to generating "GLOBAL PROFESSIONALS".

Welcome to the portals of REVA University!

Dr. M Dhanamjaya Vice Chancellor, REVA University

Director's Message

The B. Tech in Civil Engineering is designed keeping in view the current situation and possible future developments, both at national and global levels. This course is designed to give greater emphasis on core Civil Engineering. There are ample number of courses providing knowledge in specialized areas of Structural Engineering, Water Resources Engineering, Transportation Engineering, Geotechnical Engineering, Surveying and Environmental Engineering etc. facilitating students to choose specialized areas of their interest. Adequate attention is given to provide students the basic concepts.

Civil engineering is one of the earliest to start among the core subjects. The structure of

the course has undergone a face-lift with the introduction of subjects from latest advanced subjects like Town Planning, Urban Transport Planning, Prestressed & Precast Structures, Solid Waste Management, Industrial Waste Water Treatment etc. Thus the Civil Engineering stream is designed to provide you with several options to choose from for your later years. The Indian government having plans to adopt make in India concept in this major is infrastructure development. Hence Infrastructure development sector offers lots of job opportunities for well qualified graduates.

The program is thus designed to expose students to various subjects having hand on applications in planning, design & construction, through outcome based teaching and learning process which emphasizes practical exposure rather than memorization. A variety of activities such as mini projects, seminars, interaction with industries, cultural activities and social activities are in place to shape the all-round development of students.

If you are interested in any one of the following, then Civil Engineering is the option you should consider.

Structural Engineering- to analyze and design structures, to implement earthquake resisting structures, to maintain quality of construction, to design eco-friendly buildings etc.

Water Resources Engineering - To solve the water for drinking, irrigation etc. To study ground water exploration and recharge.

Transportation Engineering- To resolve the current traffic problems and plan for the future requirements of the society.

Environmental Engineering - To assure and supply the quality drinking water for people and for industries. To protect environment form the air pollution, solid water management and waste water disposal.

Geotechnical Engineering- To study and testing of soils to improve the safe bearing capacity of the soils so that the structure will be safe.

The benefits of choosing Civil Engineering are:

Flexibility to choose various fields upon graduation.

Opportunity to work on Live Problems.

Opportunity to work on Latest Technologies.

Opportunity for designers & planner to plan & design live projects.

I am sure the students choosing B Tech in Civil Engineering in REVA University will enjoy the curriculum, teaching and learning environment, the vast infrastructure and the experienced teachers involvement and guidance. We will strive to provide all needed comfort and congenial environment for their studies. I wish all students pleasant stay in REVA and grand success in their career.

Dr. Y. Ramalinga Reddy Director School of Civil Engineering.

CONTENTS

Sl. No.	Particulars	Page No.
1	Message from the Hon'ble Chancellor	2
2	Message from the Vice- Chancellor	3
3	Message from Director	4
4	Rukmini Educational Charitable Trust	6
5	About REVA University	7
5	Vision, Mission, Objectives	9
6	About School of Civil Engineering Vision Mission Advisory Board BOS	10
7	Programme Overview Programme Educational Objectives Programme Outcomes Programme Specific Outcomes	13
9	Regulations Governing M.Tech. programmes	16
10	Program Scheme- M. Tech. (Computer Aided Structural Engineering)	29
11	Curriculum- M. Tech. (Computer Aided Structural Engineering)	33

RUKMINI EDUCATIONAL CHARITABLE TRUST

It was the dream of late Smt. Rukmini Shyama Raju to impart education to millions of underprivileged children as she knew the importance of education in the contemporary society. The dream of Smt. Rukmini Shyama Raju came true with the establishment of Rukmini Educational Charitable Trust (RECT), in the year 2002. Rukmini Educational Charitable Trust (RECT) is a Public Charitable Trust, set up in 2002 with the objective of promoting, establishing and conducting academic activities in the fields of Arts, Architecture, Commerce, Education, Engineering, Environmental Science, Legal Studies, Management and Science & Technology, among others. In furtherance of these objectives, the Trust has set up the REVA Group of Educational Institutions comprising of REVA Institute of Technology & Management (RITM), REVA Institute of Science and Management (RISM), REVA Institute of Management Studies (RIMS), REVA Institute of Education (RIE), REVA First Grade College (RFGC), REVA Independent PU College at Kattigenahalli, Ganganagar and Sanjaynagar and now REVA University. Through these institutions, the Trust seeks to fulfil its vision of providing world class education and create abundant opportunities for the youth of this nation to excel in the areas of Arts, Architecture, Commerce, Education, Engineering, Environmental Science & Technology.

Every great human enterprise is powered by the vision of one or more extraordinary individuals and is sustained by the people who derive their motivation from the founders. The Chairman of the Trust is Dr. P. Shyama Raju, a developer and builder of repute, a captain of the industry in his own right and the Chairman and Managing Director of the DivyaSree Group of companies. The idea of creating these top notched educational institutions was born of the philanthropic instincts of Dr. P. Shyama Raju to do public good, quite in keeping with his support to other socially relevant charities such as maintaining the Richmond road park, building and donating a police station, gifting assets to organizations providing accident and trauma care, to name a few.

The Rukmini Educational Charitable Trust drives with the main aim to help students who are in pursuit of quality education for life. REVA is today a family of ten institutions providing education from PU to Post Graduation and Research leading to PhD degrees. REVA has well qualified experienced teaching faculty of whom majority are doctorates. The faculty is supported by committed administrative and technical staff. Over 13,000 students study various courses across REVA's three campuses equipped with exemplary state-of-the-art infrastructure and conducive environment for the knowledge driven community.

ABOUT REVA UNIVERSITY

REVA University has been established under the REVA University Act, 2012 of Government of Karnataka and notified in Karnataka State Gazette No. 80 dated 27thFebruary, 2013. The University is empowered by UGC to award degrees any branch of knowledge under Sec.22 of the UGC Act. The University is a Member of Association of Indian Universities, New Delhi. The main objective of the University is to prepare students with knowledge, wisdom and patriotism to face the global challenges and become the top leaders of the country and the globe in different fields.

REVA University located in between Kempegowda International Airport and Bangalore city, has a sprawling green campus spread over 45 acres of land and equipped with state-of-the-art infrastructure that provide conducive environment for higher learning and research. The REVA campus has well equipped laboratories, custom-built teaching facilities, fully air-conditioned library and central computer centre, the well planned sports facility with cricket ground, running track & variety of indoor and outdoor sports activities, facilities for cultural programs. The unique feature of REVA campus is the largest residential facility for students, faculty members and supportive staff.

REVA consistently ranked as one of the top universities in various categories because of the diverse community of international students and its teaching excellence in both theoretical and technical education in the fields of Engineering, Management, Law, Science, Commerce, Arts, Performing Arts, and Research Studies. REVA offers 28 Undergraduate Programmes, 22 Full-time and 2 Part-time Postgraduate Programmes, 18 Ph. D Programmes, and other Certificate/ Diploma/Postgraduate Diploma Programmes in various disciplines.

The curriculum of each programme is designed with a keen eye for detail by giving emphasis on hands-on training, industry relevance, social significance, and practical applications. The University offers world-class facilities and education that meets global standards.

The programs being offered by the REVA University are well planned and designed after detailed study with emphasis with knowledge assimilation, applications, global job market and their social relevance. Highly qualified, experienced faculty and scholars from reputed universities / institutions, experts from industries and business sectors have contributed in preparing the scheme of instruction and detailed curricula for this program. Greater emphasis on practice in respective areas and skill development to suit to respective job environment has been given while designing the curricula. The Choice Based Credit System and Continuous Assessment Graded Pattern (CBCS – CAGP) of education has been introduced in all programs to facilitate students to opt for subjects of their choice in addition to the core subjects of the study and prepare them with needed skills. The system also allows students to move forward under the fast track for those who have the capabilities to surpass others. These programs are taught by well experienced qualified faculty supported by the experts from industries, business sectors and such other organizations. REVA University has also initiated many supportive measures such as bridge courses, special coaching, remedial classes, etc., for slow learners so as to give them the needed input and build in them confidence and courage to move forward and accomplish success in their career. The University has also entered into MOUs with many industries, business firms and other institutions seeking their help in imparting quality education through practice, internship and also assisting students' placements.

REVA University recognizing the fact that research, development and innovation are the important functions of any university has established an independent Research and Innovation division headed by a senior professor as Dean of Research and Innovation. This division facilitates all faculty members and research scholars to undertake innovative research projects in engineering, science & technology and other areas of study. The interdisciplinary-multidisciplinary research is given the top most priority. The division continuously liaisons between various funding agencies, R&D Institutions, Industries and faculty members of REVA University to facilitate undertaking innovative projects. It encourages student research projects by forming different research groups under the guidance of seniorFaculty members. Some of the core areas of research wherein our young faculty members are working include Data Mining, Cloud Computing, Image Processing, Network Security, VLSI and Embedded Systems, Wireless Censor Networks, Computer Networks, IOT, MEMS, Nano-Electronics, Wireless Communications, Bio-

fuels, Nano-technology for coatings, Composites, Vibration Energies, Electric Vehicles, Multilevel Inverter Application, Battery Management System, LED Lightings, Renewable Energy Sources and Active Filter, Innovative Concrete Reinforcement, Electro Chemical Synthesis, Energy Conversion Devices, Nano-structural Materials, Photo-electrochemical Hydrogen generation, Pesticide Residue Analysis, Nano materials, Photonics, Nana Tribology, Fuel Mechanics, Operation Research, Graph theory, Strategic Leadership and Innovative Entrepreneurship, Functional Development Management, Resource Management and Sustainable Development, Cyber Security, General Studies, Feminism, Computer Assisted Language Teaching, Culture Studies etc.

The REVA University has also given utmost importance to develop the much required skills through variety of training programs, industrial practice, case studies and such other activities that induce the said skills among all students. A full-fledged Career Development and Placement (CDC) department with world class infrastructure, headed by a dynamic experienced Professor Dean, and supported by well experienced Trainers, Counsellors and Placement Officers.

The University also has University-Industry Interaction and Skill Development Centre headed by a Senior Professor & Director facilitating skill related training to REVA students and other unemployed students. The University has been recognised as a Centre of Skill Development and Training by NSDC (National Skill Development Corporation) under Pradhan Mantri Kaushal VikasYojana. The Centre conducts several add-on courses in challenging areas of development. It is always active in facilitating student's variety of Skill Development Training programs.

The University has collaborations with Industries, universities abroad, research institutions, corporate training organizations, and Government agencies such as Florida International University, Oklahoma State University, Western Connecticut University, University of Alabama, Huntsville, Oracle India Ltd, Texas Instruments, Nokia University Relations, EMC2, VMware, SAP, Apollo etc., to facilitate student exchange and teacher–scholar exchange programs and conduct training programs. These collaborations with foreign universities also facilitates students to study some of the programs partly in REVA University and partly in foreign university, viz, M.S in Computer Science one year in REVA University and the next year in the University of Alabama, Huntsville, USA.

The University has also given greater importance to quality in education, research, administration and all activities of the university. Therefore, it has established an independent Internal Quality division headed by a senior professor as Dean of Internal Quality. The division works on planning, designing and developing different quality tools, implementing them and monitoring the implementation of these quality tools. It concentrates on training entire faculty to adopt the new tools and implement their use. The division further works on introducing various examination and administrative reforms.

To motivate the youth and transform them to become innovative entrepreneurs, successful leaders of tomorrow and committed citizens of the country, REVA organizes interaction between students and successful industrialists, entrepreneurs, scientists and such others from time to time. As a part of this exercise great personalities such as Bharat Ratna Prof. C. N. R. Rao, a renowned Scientist, Dr. N R Narayana Murthy, Founder and Chairman and Mentor of Infosys, Dr. K Kasturirangan, Former Chairman ISRO, Member of Planning Commission, Government of India, Dr. Balaram, Former Director IISc., and noted Scientist, Dr. V S Ramamurthy, Former Secretary, DST, Government of India, Dr. V K Aatre, noted Scientist and former head of the DRDO and Scientific Advisor to the Ministry of Defence Dr. Sathish Reddy, Scientific Advisor, Ministry of Defence, New Delhi and many others have accepted our invitation and blessed our students and faculty members by their inspiring addresses and interaction.

REVA organises various cultural programs to promote culture, tradition, ethical and moral values to our students. During such cultural events the students are given opportunities to unfold their hidden talents and motivate them to contribute innovative ideas for the progress of the society. One of such cultural events is REVAMP conducted every year. The event not only gives opportunities to students of REVA but also students of other Universities and Colleges. During three days of this mega event students participate in debates, Quizzes, Group discussion, Seminars, exhibitions and variety of cultural events. Another important event is Shubha Vidaaya, - Graduation Day

for the final year students of all the programs, wherein, the outgoing students are felicitated and are addressed by eminent personalities to take their future career in a right spirit, to be the good citizens and dedicate themselves to serve the society and make a mark in their respective spheres of activities. During this occasion, the students who have achieved top ranks and won medals and prizes in academic, cultural and sports activities are also recognised by distributing awards and prizes. The founders have also instituted medals and prizes for sports achievers every year. The physical education department conducts regular yoga class's every day to students, faculty members, administrative staff and their family members and organizes yoga camps for villagers around.

Vision

REVA University aspires to become an innovative university by developing excellent human resources with leadership qualities, ethical and moral values, research culture and innovative skills through higher education of global standards.

Mission

To create excellent infrastructure facilities and state-of-the-art laboratories and incubation centres

To provide student-centric learning environment through innovative pedagogy and education reforms

To encourage research and entrepreneurship through collaborations and extension activities

To promote industry-institute partnerships and share knowledge for innovation and development

To organize society development programs for knowledge enhancement in thrust areas

To enhance leadership qualities among the youth and enrich personality traits, promote patriotism and moral values.

Objectives

Creation, preservation and dissemination of knowledge and attainment of excellence in different disciplines

Smooth transition from teacher - centric focus to learner - centric processes and activities

Performing all the functions of interest to its major constituents like faculty, staff, students and the society to reach leadership position

Developing a sense of ethics in the University and Community, making it conscious of its obligations to the society and the nation

Accepting the challenges of globalization to offer high quality education and other services in a competitive manner

ABOUT SCHOOL OF CIVIL ENGINEERING

The School of Civil Engineering is headed by highly experienced Professor and is supported by well qualified faculty members. The school has the state-of-art class rooms and well equipped laboratories. It offers B. Tech and M. Tech programs in various specialized streams. The school also has research program leading to doctoral degree. The curriculum of both graduate and post graduate degree programs have been designed to bridge the gap between industry – academia and hence they are industry application oriented. The B. Tech program aims to prepare human resources to play a leading role in the competitive construction field and excel in their endeavours. The Master's Degree programs focus on research and design in the core and Computer Aided Structural Engineering, Construction technology and management & Transportation Engineering & Management to supplement and create a sustainable world and to enhance the global quality of life by adopting enhanced techniques of design and application. This is reflected in various core subjects offered within the program. Currently Civil Engineering teaching was limited to planning, analysis, design and execution of different types of infrastructure like buildings, roads, bridges, dams and power plants. However, due to increase of technological sophistication and demand for higher living standards geared up by economic growth and concerns about environmental impact have changed the scope of Civil Engineering. The challenges of today's Civil Engineering infrastructure are much more complex and interdependencies between resources.

Even though there are a large number of institutions in the country which are producing Civil Engineers, there is acute shortage of quality Civil Engineers. The REVA UNIVERSITY would like to offer Civil Engineering Programme to produce quality engineers who are effective and efficient in problem solving and providing economical and sustainable infrastructural solutions.

VISION

"To produce young Engineers of calibre, who would be committed to their profession with ethics, will be able to contribute to Civil Engineering and allied fields through research and innovation and optimizing usage of resources globally making the world eco-friendlier to live in."

MISSION

To make the Department Centre of excellence for training the undergraduate students.

To promote involvement of staff and students in research and advanced training.

To develop good understanding skills in student communities about Civil Engineering, ethical practices, automation design and society need centric teaching and learning and imparting value addition skills.

To provide student-centric learning environment through innovative pedagogy and education reforms

BOARD OF STUDIES COMMITTEE

B	BOS MEMBERS LIST FOR M TECH COMPUTER AIDED STRUCTURAL ENGINEERING			
Sl. No.	Name, Designation & Affiliation	Status	Correspondence Address	
1	Dr. Y. Ramalinga Reddy Director, School of Civil Engineering, REVA University	Chairperson	Rukmini Knowledge park, REVA University, Yelahanka, Bengaluru-560064 (M): 9448508996 Email: ramalingareddy@reva.edu.in	
2	Dr. V. Ramachandra Zonal Head, Technical Services, Ultra Tech Cement Ltd.,	Member	Zonal Head, Technical Services, Ultra Tech Cement Ltd., Industry House, 6th floor, #45, Race Course Road, Bangalore 560 001, (M)97432-47985 Email: ramachandra.v@adityabirla.com	
3	Dr. G. Anand Director, APT Consulting Engineering Service,	Member	No. 55/2, 3rd floor, East Park Road, Malleshwaram, Bangalore- 560055 (M): 9845128153 Email: <u>gananda36@gmail.com</u>	
4	Sri. N. Ranganath Managing Director, EIT Technology Pvt. Ltd.,	Member	35th 'C' Cross, 4th T block, Jaya nagar, Bangalore- 560041 (M): 9449021149 Email: nranganatha@eitech.in	
5	Dr. R. V. Ranganath Professor, Department of Civil Engineering, BMS College of Engineering	Member	Professor, Dept. of Civil Engineering, BMS College of Engineering, Bull Temple Road, Bangalore-560 019 (M) 98450-86602 Email: rangarv@yahoo.com	
6	Dr. K. M. Krishna Murthy RAASTA- Centre for Road Technology	Member	Volvo Equipment Campus, Phase-1, Peenya Industrial area, Bangalore- 560058 (M): 9844119221 Email: group.rasta@raastaindia.com	
7	Dr. Anil Kumar K S Highway design lead, WS Atkins India Pvt. Ltd.,	Member	 #81, 2nd cross, Munnireddy layout, Banaswadi, Horamavu, Bengaluru-560043 (M): 8105555778 Email: <u>anilgowda1985@gmail.com</u> 	
8	Dr. Raghavendra Y.B Senior Manager – Quality Control & Research & Development, M/s Aparna Enterprises Limited.	Member	#4/2, Shri Kalabhyraveshwara Nilaya, 5th Cross, 3rd Main, Riffco Shantinikethan Layout, Medahalli, Virgonagar post, Bengaluru-560049 (M): 9886161233 Email: <u>raghuyb82@gmail.com</u>	

9	Dr. Sunil Kumar Tengli Professor, REVA University	Member (Internal)	School of Civil Engineering, Rukmini Knowledge park, REVA University, Yelahanka, Bengaluru-560064 (M): 9844057122 Email: dr.sktengali@reva.edu.in
10	Dr. P. Shivananda Professor, REVA University	Member (Internal)	School of Civil Engineering, Rukmini Knowledge park, REVA University, Yelahanka, Bengaluru-560064 (M): 9448047250 Email: pshivananda@reva.edu.in
11	Dr. Seelam Srikanth Reddy Assistant Professor, REVA University	Member (Internal)	School of Civil Engineering, Rukmini Knowledge park, REVA University, Yelahanka, Bengaluru-560064 (M): 9491303992 Email: srikanths.reddy@reva.edu.in
12	Vinayaka B. Asst. Professor, REVA University	Member Alumni	Swathi Civil Consultancy (M): 9538959138 Email: vinayaka.b@reva.edu.in
13	Vishwas L Student, REVA University	Current Student	Rukmini Knowledge park, REVA University, Yelahanka, Bengaluru-560064 (M): 8197181425 Email: r19mce16@ce.reva.edu.in

Program Overview

M.Tech. Computer Aided Structural Engineering or Master of Technology in Computer Aided Structural Engineering is a two-year postgraduate course. Computer Aided Structural Engineering is an innovative program, focused on the combination of recent advances made in the field of structural engineering. This combination allows structural engineer the flexibility and freedom for a better understanding of structural behaviour with material and geometric non-linearity and loading uncertainties. The course provides an excellent grounding in the fundamentals of structural engineering subjects. The course is suitable for those who want to have in-depth knowledge of mathematical modelling and computational methods in the areas of non-linear, static and dynamic analysis of structures

Employment Areas, Academic Institutions, Design Consultancy, Airports, Highways, Railways, IT Companies, Government jobs and Entrepreneurship

Program Educational Objectives (PEO's)

The programme educational objectives of M. Tech CASE (Computer Aided Structural Engineering) of REVA University is to prepare graduates

- PEO-1 To have successful professional careers in industry, government, academia and military as innovative engineers.
- PEO-2 To successfully solve engineering problems associated with the lifecycle of Civil Engineering system, in particular structural engineering by communicating effectively either leading a team or as a team member with ethical practices.
- PEO-3 To continue to learn and advance their careers through activities such as research and development, acquiring doctoral degree, participation in national level research programmes, teaching and research at university level etc.,
- PEO-4 To be active members ready to serve the society locally and internationally, may take up entrepreneurship for the growth of economy and to generate employment; and adopt the philosophy of lifelong learning to be aligned with economic and technological development.

Program Outcomes (POs)

On successful completion of the program, the graduates of M. Tech CASE (Computer Aided Structural Engineering) program will be able to:

PO1. Demonstrate in-depth knowledge of computer aided structural Engineering, including wider and global perspective, with an ability to discriminate, evaluate, analyze and synthesize existing and new knowledge, and integration of the same for enhancement of knowledge.

PO2. Analyze complex engineering problems critically; apply independent judgment for synthesizing information to make intellectual and/or creative advances for conducting research in a wider theoretical, practical and policy context.

PO3. Think laterally and originally, conceptualize and solve structural engineering problems, evaluate a wide range of potential solutions for those problems and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in computer aided structural Engineering.

PO4. Extract information pertinent to unfamiliar problems through literature survey and experiments, apply appropriate research methodologies, techniques and tools, design, conduct experiments, analyze and interpret data, demonstrate higher order skill and view things in a broader perspective, contribute individually/in group(s) to the development of scientific/technological knowledge in computer aided structural Engineering.

PO5. Create, select, learn and apply appropriate techniques, resources, and structural engineering and IT tools, including prediction and modelling, to complex engineering activities with an understanding of the limitations.

PO6. Possess knowledge and understanding of group dynamics, recognize opportunities and contribute positively to collaborative-multidisciplinary scientific research, demonstrate a capacity for self-management and teamwork, decision-making based on open-mindedness, objectivity and rational analysis in order to achieve common goals and further the learning of themselves as well as others.

PO7. Demonstrate knowledge and understanding of structural Engineering principles and apply the same to one's own work, as a member and leader in a team, manage projects efficiently in respective disciplines and multidisciplinary environments after consideration of economical and financial factors.

PO8. Communicate with the engineering community, and with society at large, regarding complex Structural engineering activities confidently and effectively, such as, being able to comprehend and write effective reports and design documentation by adhering to appropriate standards, make effective presentations, and give and receive clear instructions.

PO9: Recognize the need for, and have the preparation and ability to engage in life-long learning independently, with a high level of enthusiasm and commitment to improve knowledge and competence continuously.

PO10. Acquire professional and intellectual integrity, professional code of conduct, ethics of research and scholarship, consideration of the impact of research outcomes on professional practices and an understanding of responsibility to contribute to the community for sustainable development of society.

PO11. Observe and examine critically the outcomes of one's actions and make corrective measures subsequently, and learn from mistakes without depending on external feedback (SELF learning).

Programme Specific Outcomes (PSO's)

On successful completion of the program, the graduates M. Tech CASE (Computer Aided Structural Engineering) program will be able to:

PSO-1: Apply knowledge of Structural Engineering and management in real time.

PSO-2: Analyse a system, component or process in the knowledge areas of Structural Engineering in real time problems.

PSO-3: Design a system, component, or process in more than one areas of Structural Engineering.

PSO-4: Conduct investigations and address complex Structural Engineering problems; Utilize and develop innovative tools and techniques that are appropriate in discipline. Structural Engineering.

- GA1: Scholarship of knowledge
- GA2: Critical thinking
- GA3: Problem solving
- GA4: Research skill
- GA5: Usage of modern tools
- GA6: Collaborative and multidisciplinary work
- GA7: Project management and finance
- GA8: Communication
- GA9: Lifelong learning
- GA10: Ethical practices and social responsibility
- GA11: Independent and reflective learning.

ACADEMIC REGULATIONS

M. Tech., (2 years/3 Years) Degree Programs (Applicable for the programs offered from 2022-23 Batch)

Regulations – M Tech., Degree Program Academic Year 2022-23 Batch

(Framed as per the provisions under Section 35 (ii), Section 7 (x) and Section 8 (xvi) & (xxi) of the REVA University Act, 2012)

1. Title and Commencement:

- 1.1 These Regulations shall be called "REVA University Academic Regulations M Tech., Degree Program 2022-23 Batch subject to amendments from time to time by the Academic Council on recommendation of respective Board of Studies and approval of Board of Management
- 1.2 These Regulations shall come into force from the date of assent of the Chancellor.

2. The Programs:

These regulations cover the following M Tech., Degree programs of REVA University offered during 2020-21

M Tech (Full Time) in:

Artificial Intelligence Computer Science and Engineering Computer Aided Structural Engineering Construction Technology & Management Cybersecurity Digital Communication and Networking Machine Design Power Energy & Systems Transportation Engineering and Management VLSI and Embedded Systems

Also

M Tech (Part Time) in: Computer Science and Engineering VLSI and Embedded Systems

3. Duration and Medium of Instructions:

3.1 **Duration:** The duration of theM Tech degree program shall be **TWO years** comprising of **FOUR** Semesters. A candidate can avail a maximum of 8 semesters - 4 years as per double duration norm, in one stretch to complete M Tech degree. The duration for part time students is **THREE years** and a maximum of 6 years they are required to complete the program.

3.2 The medium of instruction shall be English.

4. Definitions:

4.1 Course: "Course" means a subject, either theory or practical or both, listed under a programme; Example: "Finite Element Method of Analysis" in M Tech Civil Engineering program, "Advanced Theory of Vibration" in M Tech., Mechanical program are examples of courses to be studied under respective programs.

Every course offered will have three components associated with the teaching-learning process of the course, namely, L, T and P.

L stands for Lecture session consisting of classroom instruction.

T stands for **Tutorial** session consisting participatory discussion / self-study/ desk work/ brief seminar presentations by students and such other novel methods that make a student to absorb and assimilate more effectively the contents delivered in the Lecture classes.

P stands for **Practice** session and it consists of Hands on Experience / Laboratory Experiments / Field Studies / Case Studies / Project Based Learning or Course end Project/Self Study/ Online courses from listed portals that equip students to acquire the much required skill component.

4.2 Classification of Courses

Courses offered are classified as: Core Courses, Open Elective Courses, Project work/Dissertation

- 4.2.1 **Core Course (CC):** A course which should compulsorily be studied by a candidate choosing a particular program of study
- 4.2.2 **Foundation Course (FC):** The foundation Course is a mandatory course which should be completed successfully as a part of graduate degree program irrespective of the program of study
- 4.2.3 **Hard Core Course (HC) simply core course:** The **Hard Core Course** is a Core Course in the main branch of study and related branch(es) of study, if any, that the candidates have to complete compulsorily

4.2.4 Soft Core Course (SC) (also known as Professional Elective Course)

A Core course may be a **Soft Core** if there is a choice or an option for the candidate to choose a course from a pool of courses from the main branch of study or from a sister/related branch of study which supports the main branch of study

4.2.5 **Open Elective Course (OE):**

An elective course chosen generally from other discipline / subject, with an intention to seek exposure to the basics of subjects other than the main discipline the student is studying is called an **Open Elective Course.**

4.2.6 Project Work / Dissertation:

Project work / Dissertation work is a special course involving application of knowledge in solving / analysing /exploring a real life situation / difficult problems to solve a multivariable or complex engineering problems.

5. Eligibility for Admission:

5.1. The eligibility criteria for admission to M Tech Program (Full Time) of 2 years (4 Semesters) and (Part Time) of 3 years (6 Semesters) are given below:

Sl. No.	Program	Duration	Eligibility
1	Masters of Technology (M Tech) in Artificial Intelligence	4 Semesters (2 years)	B E / B.Tech. in CSE / ISE / TE / MCA / M. Sc. in Computer Science or Mathematics or Information Science or Information Technology with a minimum of 50% (45% in case of SC/ST) marks in aggregate of any recognized University / Institution or AMIE or any other qualification recognized as equivalent there to.
2	M Tech in Computer Science and Engineering	Full Time – 4 Semesters (2 years) Part Time – 6 Semesters (3 years)	B E / B.Tech. in ECE / IT / EEE / CSE / ISE / TE / MCA / M.Sc. in Computer Science or Mathematics or Information Science or Information Technology with a minimum of 50% (45% in case of SC/ST) marks in aggregate of any recognized University / Institution or AMIE or any other qualification recognized as equivalent there to.

3	M Tech in Computer Aided Structural Engineering Construction Technology & Management	4 Semesters (2 years)	BE/ B.Tech. in Civil Engineering with a minimum of50% (45% in case of SC/ST) marks in aggregate of any recognized University / Institution or AMIE or any other qualification recognized as equivalent there to.
	Transportation Engineering and Management		
4	M Tech in Power Energy & Systems	4 Semesters (2 years)	BE/ B.Tech. in EE/ EEE/ ECE/ CSE/ MS / M.Sc. in Mathematics/Physics/Electronics / Information Technology or Information Science with a minimum of 50% (45% in case of SC/ST) marks in aggregate of any recognized University / Institution or AMIE or any other qualification recognized as equivalent there to.
5	M Tech in Digital Communication and Networking	4 Semesters (2 years)	B E / B.Tech. in ECE /TE / EEE / CSE / ISE / Instrumentation Technology / Medical Electronics/M Sc in Electronics with a minimum of 50% (45% in case of SC/ST) marks in aggregate of any recognized University/Institution or AMIE or any other qualification recognized as equivalent there to.
6	M Tech in VLSI and Embedded Systems	Full Time – 4 Semesters (2 years) Part Time – 6 Semesters (3 years)	B E / B.Tech. in ECE /TE / EEE / CSE / ISE / Instrumentation Technology / Medical Electronics/M Sc in Electronics with a minimum of 50% (45% in case of SC/ST) marks in aggregate of any recognized University/Institution or AMIE or any other qualification recognized as equivalent there to.
7	M Tech in Machine Design	4 Semesters (2 years)	BE / B.Tech. in Mechanical/Aeronautical /Mechatronics,Industrial Engineering, Production Engineering,Production Engineering and Systems Technology. Automobile / Industrial Production Engineering with a minimum of 50% (45% in case of candidatebelonging to SC/ST category) marks in aggregate, of any recognized University / Institution or AMIE or any other qualification recognized as equivalent there to.
8	M Tech in Cybersecurity	Full Time – 4 Semesters (2 years)	B E / B.Tech. in ECE / IT / EEE / CSE / ISE / TE / MCA / M.Sc. in Computer Science or Mathematics or Information Science or Information Technology with a minimum of 50% (45% in case of SC/ST) marks in aggregate of any recognized University / Institution or AMIE or any other qualification recognized as equivalent there to.

5.2 Provided further that the eligibility criteria are subject to revision by the Government Statutory Bodies, such as AICTE, UGC from time to time.

6. Courses of Study and Credits

- 6.1 Each course of study is assigned with certain credit value
- 6.2 Each semester is for a total duration of 20 weeks out of which 16 weeks dedicated for teaching and learning and the remaining 4 weeks for final examination, evaluation and announcement of results
- 6.3 The credit hours defined as below

In terms of credits, every one hour session of L amounts to 1 credit per Semester and a minimum of two hour session of T or P amounts to 1 credit per Semester or a three hour session of T / P amounts to 2 credits over a period of one Semester of 16 weeks for teaching-learning process.

1 credit = 14 credit hours spread over 16 weeks or spread over the semester

The total duration of a semester is 20 weeks inclusive of semester-end examination.

The following table describes credit pattern

able-2: Credit Pattern					
Lectures(L	Tutorials(T	Practice (P)	Credits(L:T:P	Total Credits	Total Contact
4	2	0	4:1:0	5	6
3	2	0	3:1:0	4	5
3	0	2	3:0:1	4	5
2	2	2	2:1:1	4	6
0	0	6	0:0:3	3	6
4	0	0	4:0:0	4	4
2	0	0	2:0:0	2	2

a. The concerned BoS will choose the convenient Credit Pattern for every course based on size and nature of the course

7. Different Courses of Study:

Different Courses of Study are labeled as follows:

- a. Core Course (CC)
- b. Foundation Course (FC)
- c. Hard Core Course (HC)
- d. Soft Core Course (SC)
- e. Open Elective Course (OE)
- f. Minor Project
- g. Major Project / Dissertation:

The credits for minor projects, major project/Dissertation will be decided by the respective Schools.

8. Credit and Credit Distributions:

8.1 A candidate has to earn 72 credits for successful completion of M Tech degree with a distribution of credits for different courses as prescribed by the University.

- **8.2** A candidate can enroll for a maximum of 24 credits per Semester. However s/he may not successfully earn a maximum of 24 credits per semester. This maximum of 24 credits does not include the credits of courses carried forward by a candidate.
- 8.3 Only such full time candidates who register for a minimum prescribed number of credits in each semester from I semester to IV semester and complete successfully 72 credits in 4 successive semesters shall be considered for declaration of Ranks, Medals, Prizes and are eligible to apply for Student Fellowship, Scholarship, Free ships, and such other rewards / advantages which could be applicable for all full time students and for hostel facilities.

9. Assessment and Evaluation

9.1 The assessment and evaluation process happens in a continuous mode. However, for reporting purpose, a Semester is divided into 3 components as IA1, IA2 and SEE. The performance of a candidate in a course will be assessed for a maximum of 100 marks as explained below.

(i) Component IA1:

The first Component (IA1), of assessment is for 25 marks. This will be based on test, assignment / seminar. During the first half of the semester (i.e. by 8th week), the first 50% of the syllabus (Unit 1&2) will be completed. This shall be consolidated during the first three days of 8th week of the semester. A review test based on IA1 will be conducted and completed in the beginning of the 9th week. In case of courses where test cannot be conducted, the form of assessment will be decided by the concerned school and such formalities of assessment will be completed in the beginning of the 9th week. The academic sessions will continue for IA2 immediately after completion of process of IA1.

The finer split - up for the award of marks in IA1 is as follows:

Assignments	
Seminars	
Test-1	
marks)	
Total	

(ii) Component IA2:

The second component (IA2), of assessment is for 25 marks. This will be based on test, assignment /seminar. The continuous assessment and scores of second half of the semester (9th to 16th week) will be consolidated during 16th week of the semester. During the second half of the semester the remaining units in the course will be completed. A review test based on IA2 will be conducted and completed during 16th week of the semester. In case of courses where test cannot be conducted, the form of assessment will be decided by the concerned school and such formalities of assessment will be completed during 16th week.

The 17th week will be for revision of syllabus and preparation for the semester – end examination.

The finer split - up for the award of marks in IA2 is as follows:

Assignments	
Seminars	10 marks for second 50% of the syllabus (scaled down to 5 marks)
Test-1	
Total	

(iii) Component SEE:

The Semester End Examination of 3 hours duration for each course shall be conducted during the 18th & 19th week. This forms the third / final component of assessment

(SEE) and the maximum marks for the final component will be 50.

9.2 The schedule of continuous assessment and examinations are summarized in the following Table below.

Component	Period	Syllabus	Weightage	Activity
	1 st Week to 8 th			Instructional process and
IA1	Week	First 50%		Continuous Assessment
IAI	Last 3 days of 8 th		25%	Consolidation of IA1
	Week		2370	
	9 th week to 16 th			Instructional process and
IA2	week	Second		Continuous Assessment
1712	Last 3 days of 16 th	50%	25%	Consolidation of IA2
	week		2370	
	17 th and 18 th week			Revision and preparation for
				Semester end examination
SEE	19 th week to 20 th	Entire		Conduct of semester end
	week	syllabus	50%	examination and Evaluation
				concurrently
*Evaluation shall begin very first day after completion of the conduct of examination of the first				

*Evaluation shall begin very first day after completion of the conduct of examination of the first course and both examination and evaluation shall continue concurrently. The examination results / final grades will be announced.

9.3 Evaluation of practicals (Lab components)

There can be two types of lab components: Integrated lab and Separate lab

9.3.1 Evaluation of Separate lab

The 50 marks meant for internal assessment (IA) evaluation in case of separate lab course shall be allocated as under:

i	Conduction of regular practical / experiments throughout the semester	20 marks
ii	Maintenance of lab records / Activities /Models / charts etc	10 marks
iii	Performance of mid-term test (to be conducted while conducting second test for theory courses); the performance assessments of the mid-term test includes performance in the conduction of experiment and write up about the experiment.	20 marks
	Total	50 marks

The 50 marks meant for Semester End Examination (SEE) in case of separate lab course shall be allocated as under:

i	Conduction of practical (experiment)	30 marks
ii	Write up about the experiment/tabulation/results/inference	10 marks
iii	Viva-Voce	10 marks
	Total	50marks

9.3.2 Assessment of integrated lab course*

The 10 marks meant for Internal Assessment (IA) of the performance in carrying out Integrated lab course shall further be allocated as under:

i	Conduction of regular practical / experiments throughout the	10 marks
	semester	
ii	Maintenance of lab records and performance of internal lab test	10 marks
	to be conducted after completion of all the experiments before	
	last working day of the semester	
	Total	20 marks

9.4 The Assessment of MOOC and Online Courses

MOOC and Online courses shall be decided by the concerned School Board of Studies (BOS).

9.4.1	For	>= 2	credit	courses
-------	-----	------	--------	---------

1			
	i	IA-I	25 marks
	ii	IA-2	25 marks
	iii	Semester end examination by the concern school board (demo,	50 marks
		test, viva voice etc)	
		Total	100 marks

9.4.2 For 1 credit courses

i	IA-I	15 marks
ii	IA-2	15 marks
iii	Semester end examination by the concern school board (demo,	20 marks
	test, viva voice etc)	
	Total	50 marks

10. Setting Questions Papers and Evaluation of Answer Scripts:

- **10.1** There shall be three sets of questions papers set for each course. Two sets of question papers shall be set by the internal and one set by external examiner for a course. The Chairperson of the BoE shall get the question papers set by internal and external examiners.
- **10.2** The Board of Examiners shall scrutinize and approve the question papers and scheme of valuation.
- **10.3** There shall be double evaluation, viz, first valuation by the internal evaluator who has taught the course and second evaluation shall be an external examiner who is familiar with the course. The average marks of the two evaluations (internal examiner & external examiner) shall be the marks to be considered for declaration of results.
- **10.4** The examination for Practical work/ Field work/Project work will be conducted jointly by two examiners (internal and external). However, in case of non-availability of external examiner or vice versa, the Chairperson BoE at his discretion can invite internal / external examiners as the case may be, if required.
- **10.5** If a course is fully of (L=0):T: (P=0) type, then the examination for SEE Component will be as decided by the BoS concerned.
- **10.6** In case of a course with only practical component a practical examination will be conducted with two examiners and each candidate will be assessed on the basis of: a) Knowledge of relevant processes, b) Skills and operations involved, and c) Results / Products including calculation and reporting.
- **10.7** The duration for Semester-End practical examination shall be decided by the Controller of Examinations.

11. Evaluation of Minor Project / Major Project / Dissertation:

Right from the initial stage of defining the problem, the candidate has to submit the progress reports periodically and also present his/her progress in the form of seminars in addition to the regular discussion with the supervisor. At the end of the semester, the candidate has to submit final report of the project / dissertation, as the case may be, for final evaluation. The components of evaluation are as follows:

Component - I	Periodic Progress and Progress Reports (25%)	
Component - II	(IA2)	Results of Work and Draft Report (25%)
Component– III	(SEE)	Final Evaluation and Viva-Voce (50%). Evaluation of the report is for 30% and the Viva-Voce examination is for 20%.

Note: Candidate is eligible to submit project dissertation only after clearing all theory courses of the program.

12. All assessments must be done by the respective Schools as per the guidelines issued by the Controller of Examinations. However, the responsibility of announcing final examination results and issuing official transcripts to the students lies with the office of the Controller of Examinations.

13. **Requirements to Pass a Course**

- **13.1** A candidate's performance from all 3 components will be in terms of scores, and the sum of all three scores will be for a maximum of 100 marks (25 + 25 + 50). A candidate who secures a minimum of 40% in the SEE and an overall 50% (IA1+IA2+SEE) in a course is said to be successful.
- **13.2** The Grade and the Grade Point: The Grade and the Grade Point earned by the candidate in the subject will be as given below:

Marks,	Grade,	Grade Point	Letter
Р	G	(GP=V x G)	Grade
90-100	10	v*10	0
80-89	9	v*9	A+
70-79	8	v*8	А
60-69	7	v*7	B+
55-59	6	v*6	В
50-54	5.5	v*5.5	C+
< 50	0	v*0	F
	ABSEN	Г	AB

O - *Outstanding*; A+-Excellent; A-Very Good; B+-Good; B-Above Average; C+-Average; C-Satisfactory; F – Unsatisfactory.

Here, P is the percentage of marks (P=[(IA1+IA2)+SEE]) secured by a candidate in a course which is **rounded to nearest integer**. v is the credit value of course. G is the grade and GP is the grade point.

a. Computation of SGPA and CGPA

The Following procedure to compute the Semester Grade Point Average (SGPA)

The SGPA is the ratio of sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and the sum of the number of credits of all the courses undergone by a student, i.e

SGPA (Si) = \sum (Ci x Gi) / \sum Ci

Where Ci is the number of credits of the ith course and Gi is the grade point scored by the student in the ith course.

Course	Credit	Grade letter	Grade Point	Credit Point (Credit x Grade)
Course 1	3	Α	9	3X9=27
Course 2	3	В	8	3X8=24
Course 3	3	С	7	3X7=21
Course 4	3	0	10	3X10=30
Course 5	3	D	6	3X6=18
Course 6	3	0	10	3X10=30
Course 7	2	Α	9	2X 9 = 18
Course 8	2	В	8	2X 8 = 16
	22			184

b. Illustration for Computation of SGPA and CGPA Illustration No. 1

Thus, **SGPA = 184** ÷ **22 = 8.36**

c. Cumulative Grade Point Average (CGPA):

Overall Cumulative Grade Point Average (CGPA) of a candidate after successful completion of the required number of credits (72) for two year post graduate degree in a specialization is calculated taking into account all the courses undergone by a student over all the semesters of a program, i. e CGPA = \sum (Ci x Si) / \sum Ci

Where Si is the SGPA of the ith semester and Ci is the total number of credits in that semester.

The SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.

Illustration: CGPA after Final Semester

Semester	No. of Credits	SGPA	Credits x SGPA
(ith)	(Ci)	(Si)	(Ci X Si)
1	22	8.36	22 x 8.36 = 183.92
2	22	8.54	22 x 8.54 =187.88
3	16	9.35	16x9.35=149.6
4	12	9.50	12x9.50=114
Cumulative	72		635.4

Thus, **CGPA** = <u>22x8.36+22x8.54+16x9.35+12x9.50</u> = 8.83 72

13.3 Conversion of Grades into Percentage:

Conversion formula for the conversion of CGPA into Percentage is: Percentage of marks scored = CGPA Earned x 10 **Illustration**: CGPA Earned 8.83 x 10=88.30

14. Classification of Results

The final grade point (FGP) to be awarded to the student is based on CGPA secured by the candidate and is given as follows:

Grade (Numerical Index)	Letter	Performance	FGP
G	Grade		Qualitative Index
10	0	Outstanding	Distinction
9	A+	Excellent	Distiliction
8	А	Very Good	First Class
7	B+	Good	FIISt Class
6	В	Above average	Second Class
5.5	C+	Average	Pass
5	F	Fail	Fail
	(Numerical Index) G 10 9 8 7 6	(Numerical Index)Letter GradeG01009A+8A7B+6B5.5C+	(Numerical Index)Letter GradePerformanceGOOutstanding10OOutstanding9A+Excellent8AVery Good7B+Good6BAbove average5.5C+Average

Overall percentage=10*CGPA

- a. **Provisional Grade Card:** The tentative / provisional Grade Card will be issued by the Controller of Examinations at the end of every Semester indicating the courses completed successfully. The provisional grade card provides **Semester Grade Point Average** (SGPA). This statement will not contain the list of DROPPED courses.
- b. **Final Grade Card:** Upon successful completion of the Post Graduate Degree a Final Grade card consisting of grades of all courses successfully completed by the Candidate will be issued by the COE.

15. Attendance Requirement:

- **15.1** All students must attend every lecture, tutorial and practical classes.
- **15.2** In case a student is on approved leave of absence (e g:- representing the University in sports, games or athletics, placement activities, NCC, NSS activities and such others) and / or anyother such contingencies like medical emergencies, the attendance requirement shall be minimum of 75% of the classes taught.
- **15.3** Any student with less than 75% of attendance in aggregate of all the courses including practical courses / field visits etc., during a semester shall not be permitted to appear to the end semester examination and such student shall seek re-admission

16. Re-Registration and Re-Admission:

- **16.1** In case a candidate's class attendance in aggregate of all courses in a semester is less than 75% or as stipulated by the University, such a candidate is considered as dropped the semester and is not allowed to appear for semester end examination and he / she shall have to seek re-admission to that semester during subsequent semester / year within a stipulated period.
- **16.2** In such case where in a candidate drops all the courses in a semester due to personal reasons, it is considered that the candidate has dropped the semester and he / she shall seek re-admission to such dropped semester.

17. Absence during Internal Test:

In case a student has been absent from an internal tests due to the illness or other contingencies he / she may give a request along with necessary supporting documents and certification from the concerned class teacher / authorized personnel to the concerned Director of the School, for conducting a separate internal test. The Director of the School may consider such request depending on the merit of the case and after consultation with course instructor and class teacher, and arrange to conduct a special internal test for such candidate(s) well in advance before the Semester End Examination of that respective semester. Under no

circumstances internal tests shall be held / assignments are accepted after Semester End Examination.

18. Eligibility to Appear for Semester End Examination (SEE)

- **18.1** Only those students who fulfill 75% attendance requirement and who secure minimum 30% marks in IA1 and IA2 together in a course are eligible to appear for SEE examination in that course.
- **18.2** Those students who have 75% of attendance but have secured less than 30% marks in IA1 and IA2 together in a course are not eligible to appear for SEE examination in that course. They are treated as dropped the course and they will have to repeat that course whenever it is offered.
- **18.3** In such a case wherein he / she opts to appear for just SEE examination, then the marks secured in IA1 and IA2 shall get continued. Repeat SEE examination will be conducted in respective semesters.

19. **Provision for Supplementary Examination**

In case a candidate fails to secure a minimum of 40% (20 marks) in Semester End Examination (SEE) and a minimum of 50% marks overall (IA and SEE together), such candidate shall seek supplementary examination of only such course(s) wherein his / her performance is declared unsuccessful. The supplementary examinations are conducted after the announcement of even semester examination results. The candidate who is unsuccessful in a given course(s) shall appear for supplementary examination of odd and even semester course(s) to seek for improvement of the performance.

20. Provision to Carry Forward the Failed Subjects / Courses:

A candidate who secures a minimum of 40% in the SEE and an overall 50% (IA1+IA2+SEE) in a course is said to be successful otherwise considered that the candidate has failed the course. A candidate is required to successfully complete all the courses before submission of major project report or dissertation report. (It means that the candidate has no restrictions on the number of courses that can be carried forward)

21. **Provision for Appeal**

If a candidate is not satisfied with the evaluation of Internal Assessment components (Internal Tests and Assignments), he/she can approach the Grievance Cell with the written submission together with all facts, the assignments, and test papers, which were evaluated. He/she can do so before the commencement of respective semester-end examination. The Grievance Cell is empowered to revise the marks if the case is genuine and is also empowered to levy penalty as prescribed by the University on the candidate if his/her submission is found to be baseless and unduly motivated. This Cell may recommend for taking disciplinary/corrective action on an evaluator if he/she is found guilty. The decision taken by the Grievance committee is final.

22. Grievance Committee:

In case of students having any grievances regarding the conduct of examination, evaluation and announcement of results, such students can approach Grievance Committee for redressal of grievances. Grievance committees will be formed by CoE in consultation with VC

For every program there will be one grievance committee. The composition of the grievance committee is as follows:-

- The Controller of Examinations Ex-officio Chairman / Convener
- One Senior Faculty Member (other than those concerned with the evaluation of the course concerned) drawn from the school / department/discipline and/or from the sister schools / departments/sister disciplines – Member.
- One Senior Faculty Members / Subject Experts drawn from outside the University school / department – Member.

23. Challenge Valuation:

- **a.** A student who desires to apply for challenge valuation shall obtain a photo copy of the answer script(s) of semester end examination by paying the prescribed fee within 10 days after the announcement of the results. He / She can challenge the grade awarded to him/her by surrendering the grade card and by submitting an application along with the prescribed fee to the Controller of Examinations within 10 days after the announcement of the results. This challenge valuation is only for semester end examination.
- **b.** The answer scripts (in whatever form) for which challenge valuation is sought for shall be evaluated by the external examiner who has not involved in the first evaluation. The higher of two marks from first valuation and challenge valuation shall be the final.

24. With regard to any specific case of ambiguity and unsolved problem, the decision of the Vice-Chancellor shall be final.

SCHOOL OF CIVIL ENGINEERING M. Tech in COMPUTER AIDED STRUCTURAL ENGINEERING (2022-2024) I SEMESTER

Credit Pattern & Examination Pre Cont **Credit Value** req Title of the Course HC/S SI. act uisi Course Code CIE SEE Total No C/OE Hou te Tot Р L Т Marks Marks Marks rs al Advanced Concrete M22TB0101 HC 2 1 1 3 4 _ Technology 50 50 100 Advanced Design of M22TB0102 HC 2 1 3 4 _ 2 **RC** Structures 50 50 100 TECH in Civil Engineering Advanced Solid 3 M22TB0103 HC 2 1 3 4 _ 50 50 100 Mechanics Computational M22TB0104 HC 2 4 1 3 4 _ Structural Dynamics 50 50 100 Computational 5 M22TB0105 HC 2 Structural 1 -3 4 50 50 100 Mechanics BE / B. Finite Element M22TB0106 6 HC 2 3 4 1 _ Method of Analysis 50 50 100 Practic 7 M22TB0108 Mini Project-I al/ 1 2 3 1 _ 25 25 50 Report TOTAL 13 6 1 20 27 Practical Structural Engineering Practic 8 M22TB0107 Laboratory-I 1 1 2 3 25 25 50 al (Concrete Laboratory) TOTAL 14 2 22 30 350 350 700 6 TOTAL SEMESTER CREDITS 22 TOTAL CUMULATIVE CREDITS 22 TOTAL CONTACT HOURS 30

SCHOOL OF CIVIL ENGINEERING M. Tech in COMPUTER AIDED STRUCTURAL ENGINEERING (2022-2024)

II SEMESTER

				P re		dit P redit				Ex	aminati	ion
SI. No	Course Code	Title of the Course	HC/ SC/ OE	re q ui si te	L	T	P	Tot al	Cont act Hou rs	CIE Mar ks	SEE Mar ks	Tota l Mar ks
1	M22TB0201	Advanced Design of Steel Structures	НС		2	1	-	3	4	50	50	100
2	M22TB0202	Advanced Design of Prestressed concrete	НС		2	1	-	3	4	50	50	100
3	M22TB0203	Design of Earthquake Resistant Structures	НС	НС		1	-	3	4	50	50	100
	M22TBS211	Theory of Plates and Shells	SC	Jg	2	1	-	3	4	50	50	100
4	M22TBS212	Design of Bridges	SC	neeriı	2	1	-	3	4	50	50	100
	M22TBS213	Structural Health Monitoring	SC	TECH in Civil Engineering	2	1	-	3	4	50	50	100
	M22TBS221	Structural Masonry	SC	SC DS		1	-	3	4	50	50	100
5	M22TBS222	Design of Multi Storied Structures	SC	ECH ii	2	1	-	3	4	50	50	100
	M22TBS223	Reliability Analysis of Structures	SC	BE/B.	2	1	-	3	4	50	50	100
	M22TBS231	Design of foundation Structures	SC	B	2	1	-	3	4	50	50	100
6	M22TBS232	Design of Electrical Transmission Structures and Foundations	SC		2	1	-	3	4	50	50	100
	M22TBS233	Repair and Rehabilitation of Structures	SC		2	1	-	3	4	50	50	100
7	M22TB0205	Mini Project-II	Pract ical/ Repo rt		1	-	1	2	3	25	25	50
TO	ΓAL				13	6	1	20	27			

	Practical											
8	M22TB0204	Structural Engineering Laboratory- II(software Lab)	Practic al	1		-	1	2	3	25	25	50
		TOTAL		1	4	6	2	22	30	350	350	700
	,	TOTAL SEMESTER	CREDITS		1			2	22			
	TOTAL CUMULATIVE CREDITS								14			
	TOTAL CONTACT HOURS								30			

SCHOOL OF CIVIL ENGINEERING M. Tech in COMPUTER AIDED STRUCTURAL ENGINEERING (2022-2024) III SEMESTER

Sl. No	Course Code	Title of the Course	Practical /Term Work /	Pre req uisi	-	edit P Credit			Cont act Hou	Examination		
					L	Т	P	Tota 1	rs	CI E Ma rks	SE E Ma rks	Tota l Mar ks
1	M22TB0N01	MOOC/SWAYAM Online Course	OE	ering	3	1	0	4		25	25	50
2	M22TB0301	Internship with Report	Practical/ Term Work and Viva - Voce	TECH in Civil Engineering	2	0	2	4		25	25	50
3	M22TB0302	Project Phase-I	Practical/ Report and Viva -Voce	BE/B. TE	2	0	6	8				
		TOTAL			7	1	8	16				
	TOTAL SEMESTER CREDITS								6			
	TOTAL CUMULATIVE CREDITS								0			
		TOTAL CONTAC	CT HOURS					-	-			

SCHOOL OF CIVIL ENGINEERING

M. Tech in COMPUTER AIDED STRUCTURAL ENGINEERING (2022-2024) IV SEMESTER

Sl. No	Course Code	Title of the Course	PracticalPre/Term Workrequ/ Sessionsisite	requ		edit P Credit			Cont act Hou	Examination		
				Isite	L	Τ	Р	Tota 1	rs	CI E Ma rks	SE E Ma rks	Tota l Mar ks
1	M22TB0401	Dissertation Phase -II	Practical/ Thesis Submission and Viva- Voce	BE / B. TEC H in Civil	2	0	8	10		50	50	100
2	M22TB0402	Technical Seminar With Report	Practical/ Term Work	Engi neeri ng	0	0	2	2		25	25	50
		TOTAL						12				
		TOTAL SEME	STER CREDI	ſS		-	•	1	2			
	,	FOTAL CUMUI	LATIVE CRED	ITS				7	2			
		TOTAL CON	TACT HOURS	5				-	-			

I SEMESTER

M22TB0101		L	Т	Р	С
Duration: 16weeks	Advanced Concrete Technology	2	1	-	3
Internal Assessment: 50	Marks Semester End Examination: 50 Marks	(Minimun	n 20 Mar	ks)	
Prerequisite: Concrete	Technology				
COURSE OBJECTIV	ES: Student will be able				
1. To explore spec	cial concrete constituents and their alternative materia	als.			
	velopment of concrete and its mix design.				
	the properties of concrete.				
	ting procedures of concrete specimens.				
-	edge about the structure of concrete.				
6. To familiarize a	about special types of concretes and their design.				
COURSE OUTCOME	· ·				
	etion of this course, the student will be able				
	constituents of concrete, alternative materials and ad	mixtures.			
•	rete mix of different grades.				
3. To explain the	properties of concrete.				
4. To demonstrate	the testing of concrete specimens.				
5. To explain the	structure of concrete.				
6. To categorize a	nd design special types of concretes.				
	UNIT-I			12HC	OURS
constituent materials: R	and Mix Design: Components of modern concrete a ole of constituents, Alternate replacement materials, Concrete Placing, Curing methods, Mix proportioning visions.	Manufactu	re of Co	ncrete,	
	UNIT-II			12HC	OURS
concrete properties, Fre	Properties of Concrete : Early-Age Properties of Con- sh and Hardened concrete properties and Testing me ons, Dimensional Stability—Shrinkage and Creep.			•	onship
	UNIT-III			12HC	OURS
	: Introduction: Concrete as a Structural Material, Cha evels, Structure of Concrete in Nanometer Scale: C- ural Engineering.		•		Zone in
	UNIT-IV			12HC	OURS
Advanced Composite Fresh and hardened pro	Concrete: Self-Compacting Concrete: Mix design by perties	IS code a	nd Nans	u metho	ods,
Geo-polymer concrete:	Mix Proportion, fresh and hardened properties				
REFERENCE BOOK	S				

1. Neville A.M, "Properties of Concrete" 5 th Edition, Prentice Hall, 2011.

- 2. M. S. Shetty & Jain A.K., "Concrete Technology: Theory And Practice" S Chand Publishing, Eighth edition, 2019.
- 3. P. Kumar Mehta, Paul J.N.Monterio, "CONCRETE: Microstructure, Properties and Materials"-Tata McGraw Hill, New Delhi, 2006.
- 4. A.R.Santhakumar, (2007) "Concrete Technology"-Oxford University Press, New Delhi, 2007.
- 5. Gambhir "Concrete Technology" 6 th Reprint TMH., 2006.
- 6. Rixom.R. and Mailvaganam.N., "Chemical admixtures in concrete"- E and FN, Spon London 1999
- 7. IS 10262 : 2019, Concrete Mix Proportioning Guidelines, Bureau Of Indian Standard s, New Delhi.

Course Code	POS/ COs	PO1	Р О2	Р О3	Р О4	Р О5	Р 06	Р 07	Р 08	Р 09	PO 10	PO 11	PS O1	PS O2	PS O3	PS O4
M22TB0	CO1			3			2	2	1	1			3			1
101	CO2	2	3			3	3	3			3		3			
	CO3	3		3		2	1		3	2		2	3	2		2
	CO4	3		3	3	2	1			3			3	2		2
	CO5	2	3			3	3	3			3		3			
	CO6	3		3	3	3		2	3				3			3

Mapping of Course Outcomes with programme Outcomes

Where, 1 (Low), 2 (Medium) and 3 (High) represents strength of correlation between CO and PO.

M22TB0102			L	Т	P	С
Duration: 16weeks	ADVANCED DESI STRUCTUR	2	1	-	3	
Internal Assessment: 50	Marks Semester End E	Examination: 50 M	Iarks (Minii	num 20 N	Aarks)	
Prerequisite: Design of	RCC Structural Elements					
COURSE OBJECTIV	ES: Student will be able to le	earn				
 To Analyze R To design grid To design chir 	slabs by using yield line analy C Slabs for Different shapes v floors, continuous beams and aneys, silos and bunkers.	vith different Edg I flat slabs.				
	etailing of Earthquake Resista vated water tanks.	int Structures and				
 Is able to design Is able to Analy Is able to design Is able to design Is able to design Has learnt about 	C: After successful completion in RC slabs by using yield line rese and design Rectangular ar in grid floors, continuous bear in chimneys, silos and bunkers t the detailing of earthquake reze and design elevated water	e analysis. nd circular RC Sla ns and flat slabs. s. resistant structure	abs for diffe			IS.
	UNIT-I				12.110	NIDC
Yield line theory for a		12 HOURS				
Analysis of Rectangula	i) with simply s ii) With all edges bs with simply supported and	supported on all for fixed conditions	our edge cor	•	,	F
	UNIT-II				12 HC	OURS
Slabs : Design of floor/	Roof Slab (Flat Slab and grid	l Slab)			1	
Design of continuous b	eams with redistribution of m	oments				
	UNIT-III				12 HC	OURS
Containment Structur Design of RC Chimney	es and Chimneys : Design o s	of Containment St	ructures (Bu	inkers, ar	nd Silos)	
	UNIT-IV				12 HC	OURS
	ling of Earthquake Struc	tures and Wate	er Tanks:	Art of d		
Introduction to Deta						
resistant structures, Exp	ansion and contraction joints					
resistant structures, Exp						
resistant structures, Exp Design of elevated wate REFERENCE BOOK 1. Lin, TY and Bu	ansion and contraction joints or tanks by limit state method	crete Design".	Stamt			

4. Punmia, B.C.Asnok Kumar Jain and Arun Kumar Jain, "Comprehensive KCC Design"

5. Bhavikatti, "Advanced design of R C Structures."

Course	POS/	PO	PS	PS	PS	PS										
Code	COs	1	2	3	4	5	6	7	8	9	10	11	01	02	03	04
M22TB	CO1	3	1	2		2		2	2	1		1	3	1	3	2
0102	CO2	3	1	2		3	3					3	3	3	1	1
	CO3	3		2		2		2	2	1		1	3	1	3	2
	CO4	3		2		2		2	2	1		1	3	1	3	2
	CO5	3		3				2	2			2	3	1	2	2
	CO6	3		2		2		2	2	1		1	3	1	3	2

Mapping of Course Outcomes with Programme Outcomes

M22TB0103	ADVAN	NCED SOLID MECHANICS	L	Т	Р	С
Duration: 16weeks			2	1	-	3
Internal Assessment: 50) Marks	Semester End Examination: 50 M	arks (M	inimum 2	20 Marks)	
Prerequisite: Strength	of Materials				,	
COURSE OBJECTIV	'ES: Student	will be able to learn				
 To evaluate the To analyze the dimensional pressional pression. To solve 2D pression. To solve 2D pression. To analyze the COURSE OUTCOMINATION. Analyze the structure. 	e principal str ne equilibriu oblems. oblems of ela oblems of ela yielding of e E: After succ ess and strain	a at a point in cartesian coordinate spresses and strains in cartesian coordinate spresses and strains, compatibility concasticity by Airy's stress function appearaticity by Airy's stress function appearatic materials.	inate sys litions a proach in proach in student	tem. and bou n cartesia n polar co will be a	ndary cond in coordinate pordinate sy ible to:	litions for two e system.
 Apply of equili Solve 2D probl Solve 2D probl 	brium and co ems of elasti ems of elasti	ompatibility equations and boundary city by Airy's stress function appro city by Airy's stress function appro rials based on yield criteria.	y conditi ach in ca	ons for t artesian c	wo dimensie coordinate s	ystem.
		UNIT-I				12 HOURS
Shears, Principal Stres Hydrostatic and Pure	ses, Stress I Shear States	f Stress at a Point, Stress Compone invariants, Octahedral Stresses, Th , The Plane State of Stress, Differ m in Cylindrical Coordinates	e State	of Pure	Shear, Dec	omposition into
		UNIT-II				12 HOURS
Element, Change in Le of Strain at a Point, Ch Principal Axes of Str	ngth of a Lin nange in Dire rain and Pri	s, Deformation in the Neighbourho near Element—Linear Components ection of a Linear Element, Change incipal Strains, Plane State of S eviator and its Invariants UNIT-III	, Rectan	igular Sti Angle be	rain Compo etween Two ains in Pol	ngth of a Linear nents, The State Line Elements,
of beams. Elementary	problems of	s function approach to 2-D problem elasticity in three dimensions, stretcon- circular sections, membrane anal	ching of	•	• •	
		UNIT-IV			12	HOURS
	s – strain dia	Theories of Failure, Significance of agram in simple tension, perfectly				

REFERENCE BOOKS

- 1. Timoshenko & Goodier, "Theory of Elasticity", McGraw Hill
- 2. Srinath L.S., "Advanced Mechanics of Solids", 10th print, Tata McGraw Hill Publishing Company, New Delhi, 1994.
- 3. Singh S., "Applied Stress Analysis", Khanna Publishers. Chakrabarty J., "Theory of Plasticity", Mc-Graw Hill Book Company, Singapore, 1987
- 4. Chenn W.P and Hendry D.J, "Plasticity for Structural Engineers", Springer Verlag

Course Code	POS/ COs	P 01	P O2	Р О3	Р О4	Р 05	P O6	P 07	P 08	P 09	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4
M22TB 0103	CO1	3	1		2							3		3	3		2
0105	CO2	3	1		2							3		3	3		2
	CO3	3	1		2							3		3	3		2
	CO4	3	3	3	2							3		3	3		2
	CO5	3	3	3	2							3		3	3		2
	CO6	3	1		2							3		3	3		2

Mapping of Course Outcomes with programme Outcomes

M22TB0104		L	Т	Р	С
Duration: 16weeks	COMPUTATIONAL STRUCTURAL DYNAMICS	2	1	-	3
Internal Assessment: 50 N	Aarks Semester End Examination: 50 M	/larks (Mi	nimum 2	20 Mark	s)
Prerequisite: Engineerin	g Mechanics, Structural Analysis II				
Course Objectives: Stud	ent will be able to learn				
 To understand the To enable students vibration and force To enable students free vibration and To determine the To understand the Course Outcome: After Ability to underst Develop the math Develop the math Evaluate the response 	s to frame mathematical models of damped and	undamped S undampe d to free a will be abl cs. instrument ree and for free and for free and for	d MDO and force le to: nts. rced exc prced exc	F syster ed vibra itations. citations	ns subjected to tions.
	UNIT-I				12HRS
of freedom; Application principles. Mathematical	neering: Sources of vibration, types of excitation of Newton's laws, D'Alembert's principle, principal model of physical systems; viscously dampe ing. Principle of vibration-measuring instrument	ciple of v d systems	irtual dis s; Coulo	splacem omb dai	nping; Degrees ent and energy mping, viscous
	UNIT-II				12 HRS
response of damped and u systems to harmonic load	e-degree-of-freedom systems: Mathematical mandamped systems Forced Vibration of SDOF Sying support motion, evaluation of damping, vibratical methods applied to SDOF, Direct integration	vstems: Re ation isola	esponse ation, tra	damped insmissi	Free vibration and undamped bility, response
	UNIT-III				12 HRS
undamped MDOF system damped MDOF systems.	i-degree freedom systems: Mathematical mode as - Natural frequencies and mode shapes – ort damping properties, Rayleigh's and Cauchey's ons of Motion and Response to forced excitati t damping.	hogonalit damping	y condit method	ions, Fr ls. Force	ee vibration of ed Vibration of

UNIT-IV

Dynamics of Continuous systems: Free longitudinal vibration of bars, flexural vibration of beams with different end conditions, forced vibrations – response of beams under moving loads, wave propagation in solids.

REFERENCE BOOKS:

- 1. Mario Paz, "Structural dynamics-Theory and Computation", CBS Publishers
- 2. R.W. Clough & J. Penzien, "Dynamics of Structures", McGraw Hill
- 3. Anil K. Chopra, "Dynamics of Structures", Prentice Hall of India
- 4. Timoshenko, S., "Vibration Problems in Engineering", VanNostrand Co.,
- 5. Mukhopadhyaya, "Vibration and Structural Dynamics", Oxford & IBH
- 6. William Thompson, "Theory of Vibration with Applications"
- 7. William Seto, "Mechanical Vibrations", McGraw Hill Pub., (Schaum Series)

Course	POS/C	Р	Р	Р	Р	Р	Р	Р	Р	Р	PO	PO	PO	PS	PS	PS	PS
Code	Os	0	0	0	0	0	0	0	0	0	10	11	12	01	02	03	04
		1	2	3	4	5	6	7	8	9							
M22TB0	CO1	3	2	1	1	2		2						3	3		2
104	CO2	3			2			2						3			
	CO3	3	3	3	1			2						3	3		2
	CO4	3	3	3	1			2						3	3		2
	CO5	3	3	3	1			2					2	3	3		2
	CO6	3	3	3	1			2					2	3	3		2

Mapping of Course Outcomes with programme Outcomes

M22TB0105			L	Т	Р	С
Duration: 16weeks	COMP	UTATIONAL STRUCTURAL MECHANICS	2	1	-	3
Internal Assessment: 50) Marks	Semester End Examination: 50 Ma	arks (Minim	um 20 M	arks)	L
Prerequisite: Structura	al Analysis I	and II				
Course Objectives: Stu	udent will be	e able to learn				
matrices.	-	principles of structural analysis, dev res, Trusses subjected to direct and	-			
 force transform To analyse fram displacement transformer 	ation matricented structure ansformation	es (element approach). es, Trusses subjected to direct and inc n matrices (element approach).				
	l building fr	amed structures. amed structure, trusses by Flexibilty a alysis of structures.	and stiffness	method.		
Course Outcome: Afte	er successful	completion of this course the studen	t will be able	e to:		
 and flexibility r Be able to ana method using for Be able to ana method using d Be able to analy Have learnt the 	natrices by e lyse framed orce transfor lyse framed isplacement yse framed s analysis of t	nd principles of structural analysis an elemental approach. structures, trusses subjected to direct mation matrices (element approach). structures, trusses subjected to direct transformation matrices (element app tructures, trusses by Flexibility and S framed structures. ponent of a structure	ct and indire ect and indir proach)	ect loadir rect load	ngs by fl ings by ach	lexibility stiffness
		UNIT-I			12HOU	
Principles of minimum	potential ene	tic indeterminacy, Concepts of stiffnergy and minimum complementary er and element stiffness matrices for ba	nergy.		0,	Ĩ
		UNIT-II			12 HO	URS
•		rmation matrix – Development of glo frames (not more than 6 x 6 structure		•		
	•	transformation matrix – Developr rigid plane frames (not more than 6x				rix for
		UNIT-III			12 HO	URS
•		Rigid Frames by Flexibility Meth hod (not more than 3x3 structure	•			

Analysis of Plane rigid frames by flexibility method (not more than 3x3 structure flexibility matrix)

Using flexibility-transformation matrix.

UNIT-IV

12 HOURS

Analysis of Beams, Trusses and Rigid Frames by Stiffness method: Analysis of continuous beams, plane trusses by Stiffness method (not more than 3x3 structure stiffness matrix) using displacement-transformation matrix.

Analysis of Plane rigid frames by Stiffness method (not more than 3x3 structure stiffness matrix) using displacement-transformation matrix.

REFERENCE BOOKS:

- 1. S.Rajasekaran, "Computational Structural Mechanics", PHI, New Dehi 2001.
- 2. C.S.Reddy, "Basic Structural Analysis", TMH, New Delhi 2001.
- 3. W.Weaver and J.H.Gere, "Matrix Analysis of Framed Structures", Van Nastran, 1980.
- 4. A.K.Jain "Advanced Structural Analysis with Computer Application", Nemchand and Brothers, Roorkee, India.
- 5. M.F.Rubinstein "Matrix Computer Methods of Structural Analysis "Prentice Hall.
- 6. Devdas Menon, "Advanced Structural Analysis", Narosa Publishers

Course Code	POS/C Os	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PS O1	PS O2	PS O3	PS O4
M22TB0	CO1	3	3	3	1	2		2	2	1		1	3	3	1	2
105	CO2	3	3	3	1	2		2	1	1		1	3	3	1	2
	CO3	3	3	3	1	2		2	1	1		1	3	3	1	2
	CO4	3	3	2	1	2		2	1				3	3	1	1
	CO5	3	3	3	1	2		2	1	1		1	3	3	1	2
	CO6	3	3	3	1	2		2	1	1		1	3	3	1	2

Mapping of Course Outcomes with programme Outcomes

M22TB0106	FINITE	ELEMENT METHOD OF ANALYSIS	L	Т	Р	С
Duration: 16weeks			2	1	-	3
Internal Assessment: 5	0 Marks	Semester End Examination: 50 Marks (Min	nimum (20 Marks)	
Prerequisite: Structural					,	
COURSE OBJECTIV	ES: Student	will be able to learn				
1. The basic conc	epts and prin	ciples of structural mechanics, FDM, RRM a	and GM			
		isadvantages of FEM, for different types of p			anics.	
	-	d Lagrangian family of elements for analysir				
4. To formulate I	so-parametri	c, sub parametric and super-parametric eler	nents a	nd numer	ical integ	gration for
different proble	ems					
5. To formulate q	uadrilateral e	element for the analysis of plates.				
6. To apply the co	oncept of non	linearity in the analysis of structures.				
		essful completion of this course the student w		able to:		
•		ples of structural mechanics, FDM, RRM and				
	•	and disadvantages of FEM, for different type	•			CS.
		agrangian family of elements for analysing l		-		
	-	sub parametric and super-parametric elem	ents an	d numeri	cal integ	gration for
different proble						
-		nent for the analysis of plates.				
6. Apply the conc	ept of non-m	nearity in the analysis of structures.			121	OURS
		UNIT-I				
=	-	natics and static variables for various types of		-	-	-
		yleigh-Ritz method – Difference between F				
		od and minimization of energy approach for	elemen	t formula	tion – pr	inciples of
finite element method -	- advantages	& disadvantages – finite element procedure			1	
		UNIT-II			12H	OURS
Nodal displacement P	arameters: S	Shape function – polynomial form of displace	ement f	unction –	generaliz	zed and
natural coordinates – L					e	
Serendipity and Lagr	angian famil	ly of Elements – Shape functions for one, tw	o and th	hree dime	nsional f	irst and
second order elements	– Hermite sh	ape function for beam formulation – Numeri	cal prob	plems to i	nterpolat	e nodal
variables using shape f	unction. Forn	nulation of one-dimensional bar element, two	o- and the	hree-node	d using	
Lagrangian shape funct	tion – numeri	ical analysis of simple bars and plane trusses				
					12H	OURS
Two Noded been also	mente. Form	UNIT-III ulation using Hermite shape function – Jaco	hian tro	neformet	on motri	v _ ctroin
		atrix – consistent load vector – Gauss qua				
		s. Iso-parametric elements – sub-parametric				-
•	-			uper- par		aements –
Formulation of two-dir	nensional thr	ee-noded triangular (CST).				

UNIT-IV

12HOURS

Four-Noded quadrilateral Elements: Formulation of four-noded quadrilateral element, and its application to plane stress, plane strain and axis- symmetric problems – application of Gauss quadrature for numerical integration – Numerical problems. Element aspect ratio – mesh refinement vs. higher order elements – numbering of nodes to minimize bandwidth – static condensation technique – introduction to non-linear analysis – geometric and material non-linearity with examples (bars).

REFERENCE BOOKS

- 1. Finite element analysis Theory and Programming, C S Krishnamurthy, McGraw Hill
- 2. Concepts and applications of finite element analysis, R D Cook, DS Malkus, ME Plesha and RJ Witt, 2002, Wiley.
- 3. Finite Element Procedures, KJ Bathe, 2002, Prentice Hall, ISBN 978-546-439-982
- 4. An introduction to the finite element method, J.N. Reddy, 3rd edition, McGraw Hill.
- 5. The Finite Element Methods Its Basis and Fundamentals , Zienkiewicz & Taylor, Elsevier Publications

Course Code	POS/C Os	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PS O1	PS O2	PS O3	PS O4
	CO1	3	3	3	1	1							3	3	1	2
M22TB0 106	CO2	3	3	3	1	1							3	3	1	2
100	CO3	3	3	3	1	1							3	3	1	2
	CO4	3	3	3	1	2							3	3	1	2
	CO5	3	3	3	1	2							3	3	1	2
	CO6	2	2	2	2	3	1	2	1	2	1		3	3	2	3

Mapping of Course Outcomes with programme Outcomes

M22TB0107			L	Τ	P	С
Duration: 16weeks	- ST	RUCTURAL ENGINEERING	1	0	1	2
		LABORATORY-I ONCRETE LABORATORY)	1	0	1	3
Internal Assessment: 20	· · · · ·	Semester End Examination: 30 Mar	ks (Minin	um 8 M	arks)	
Prerequisite: Concrete			K5 (WIIIIII	ium o ivi	urks)	
relequisite. Concrete	rænnology,	Chemical admixtures				
COURSE OBJECTIV	ES: Student	will be able to learn				
1. To gain experie	ence regardin	ng the determination of properties of d	ifferent bu	uilding m	aterials.	
2. To provide an	opportunity t	o learn how to measure the parameter	s, prevaili	ng the qu	ality of the	materials.
3. To impart know	wledge of mi	x design of concrete.				
4. To gain experie	ence regardin	ng testing quality of produced concrete	e in Fresh	and hard	ened state.	
5. To gain experiment	mental know	ledge of testing specimens in loading	frame and	Self-Co	mpacting co	oncrete
Properties						
6. To gain experiment	mental know	ledge of testing specimens subjected t	o vibratio	n/dynam	ics.	
COURSE OUTCOM	E: After succ	essful completion of this course the st	udent will	be able	to:	
1. Implement goo	d quality cor	nstruction techniques.				
2. Identify quality	of Concrete	for Construction practices and implei	ment chan	ges if ess	sential.	
3. Identify the qu	ality of the m	naterials used for construction by testin	ng as per l	S specifi	cations	
4. Identify the pro	portion of th	ie mix design		_		
5. Perform testing	g on loading t	frame and Self-Compacting concrete				
6. Perform testing	g of specimer	ns on shake Table.				
EXPERIMENTS TO	BE CARRI	ED OUT				
-	concrete: des	ign for a particular strength and verify	whether	the desir	ed strength	is achieved a
28 days						
		ty of concrete by Slump Cone Test				
		erties concrete and mortar by Flow Ta				
	-	workability of concrete by Compaction		ſest		
		ty of concrete by Vee-Bee Consistome	eter			
	-	ive Strength of Cement Concrete				
	-	Flexure Test on Hardened Concrete				
		operties by Shape Test (Elongation In-				
		properties by Shape Test (Flakiness I	ndex)			
10. Impact Test on	coarse aggre	egates				
11. Water Absorpt	ion Test on C	Loarse Aggregate				
12. Demonstration	on Loading	frame				
13. Demonstration	on Shake Ta	ıble				
14. Demonstration	of SCC Prop	perties.				
REFERENCE BOOK	S					
		ncrete Technology" Sood, Hemant, M	ittal L. N.	and Kulk	arni P D C	'BS Publishe
New Delhi, 20		letete reemology 5000, remain, w	L 19 6	ing ixuik	um 1 D, C	
		anual Laboratory testing for quality co	ontrol of co	oncrete 4	th edition D	hanpat Rai a
Sons Delhi 199						

3. IS 10262-2012 Code for Mix design of concrete

Course	POS/C	PO	PS	PS	PS	PS										
Code	Os	1	2	3	4	5	6	7	8	9	10	11	01	02	03	O4
M22TB0	CO1	3	2		2	2	1		1			1	3	1	2	2
107	CO2	3	2		2	2	1		1			1	3	1	2	2
	CO3	3	2		2	2	1		1			1	3	1	2	2
	CO4	3	2		2	2	1		1			1	3	1	2	2
	CO5	3	2		2	2	1		1			1	3	1	2	2
	CO6	3	2		3	3	1		1			1	2	3		3

Mapping of Course Outcomes with programme Outcome

Where, 1 (Low), 2 (Medium) and 3 (High) represents strength of correlation between CO and PO.

The student is required to carry out individually a mini Project which is essentially an experimental investigation on special concretes. This mini project will enhance the knowledge on material characteristics

II SEMESTER

Duration: 16weeks STRUCTURES 2 1 - 3 Internal Assessment: 50 Marks Semester End Examination: 50 Marks (Minimum 20 Marks) Prerequisite: Design of Steel structures COURSE OBJECTIVES: Student will be able to learn 1 To plan for the functional requirements of an industrial building based on NBC: 2016. 2 1 - 3 To analyse and design bracket connections. . . To design of self-supporting chimneys. . . To analyse and evaluate the design requirements of a ransmission tower. COURSE OUTCOME: After successful completion of this course the student will be able to: 1. Design industrial structures such as gantry girders. <	M22TB0201	ADVANCED DESIGN OF STEEL	L	T	Р	C
Prerequisite: Design of Steel structures COURSE OBJECTIVES: Student will be able to learn 1. To plan for the functional requirements of an industrial building based on NBC: 2016. 2. To design industrial structures such as gantry girders. 3. To analyse and design bracket connections. 4. To design of self-supporting chimneys. 6. To analyse and evaluate the design requirements of a transmission tower. COURSE OUTCOME: After successful completion of this course the student will be able to: 1. Plan for the functional requirements of an industrial building based on NBC: 2016. 2. Design industrial structures such as gantry girders. 3. Analyse and design bracket connections. 4. Design storage structures such as bunkers and silos. 5. Design of self-supporting chimneys. 6. Analyse and design bracket connections. 4. Design storage structures such as bunkers and silos. 5. Design of self-supporting chimneys. 6. Analyse and design bracket connections. 4. Design storage structures such as bunkers and silos. 5. Design of self-supporting chimneys. 6. Analyse and design trequirements: Classification of buildings based on NBC:2015, planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC:2015, Planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC:2015, Planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC:2015, Planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC:2015, Protection against noise and vibration. UNIT-II 12HOURS Industrial Buildings: Design of steel gantry girders, design of bolted and welded bracket connections. UNIT-III 12HOURS Transmission Line Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of Steel Structures", Oxford University Press, December 2015. 2. Duggal S. K., "Limit State Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2019. 4. Chandra R., "	Duration: 16weeks	STRUCTURES	2	1	-	3
COURSE OBJECTIVES: Student will be able to learn 1. To plan for the functional requirements of an industrial building based on NBC: 2016. 2. To design industrial structures such as gantry girders. 3. To analyse and design bracket connections. 4. To design storage structures such as bunkers and silos. 5. To design of self-supporting chinneys. 6. To analyse and evaluate the design requirements of a transmission tower. COURSE OUTCOME: After successful completion of this course the student will be able to: 1. Plan for the functional requirements of an industrial building based on NBC: 2016. 2. Design industrial structures such as gantry girders. 3. Analyse and design bracket connections. 4. Design storage structures such as bankers and silos. 5. Design of self-supporting chimneys. 6. Analyse and evaluate the design requirements of a transmission tower. 7. UNTI-I 7. Planning and Functional Requirements: Classification of buildings based on NBC:2015, planning for layout requirements regarding Lighting. Ventilation and Fire Safety based on NBC: 2015, Protection against noise and vibration. 7. UNTI-II 7. UNTI-II 7. PlantStructures: Types of power plants, design of builde and welded bracket connections. 7. UNTI-IV 7. UNTI-IV 7. Power Plant Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of Steel Structures," Oxford University Press, December 2015. 7. Duggal S.K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. 7. Chamdra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2009. 7. Commendational Commendation of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. 7. Chamdra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018. 7. Commendational Commendations of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. 7. Chamdra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018. 7. Dusgal S.K., "Design of ste	Internal Assessment: 50 I	Marks Semester End Examination: 5	0 Marks (Mi	nimum 20 I	Marks)	
1. To plan for the functional requirements of an industrial building based on NBC: 2016. 2. To design industrial structures such as gantry girders. 3. To analyse and design bracket connections. 4. To design storage structures such as bunkers and silos. 5. To design of self-supporting chimneys. 6. To analyse and evaluate the design requirements of a transmission tower. COURSE OUTCOME: After successful completion of this course the student will be able to: 1. Plan for the functional requirements of an industrial building based on NBC: 2016. 2. Design industrial structures such as gantry girders. 3. Analyse and design bracket connections. 4. Design of self-supporting chimmeys. 6. Analyse and evaluate the design requirements of a transmission tower. UNT-I 12HOURS Planning and Functional Requirements: Classification of buildings based on NBC: 2015, planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC: 2015, Protection against noise and vibration. UNIT-II 12HOURS Transmission Line Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of Steel Structures", Oxford University Press, December 2015. 2 Duggal S. K., "Limit State Design of Steel Structures", McGraw Hill Education (In	Prerequisite: Design of S	teel structures				
 2. To design industrial structures such as gantry girders. 3. To analyse and design bracket connections. 4. To design of self-supporting chimmeys. 6. To analyse and evaluate the design requirements of a transmission tower. COURSE OUTCOME: After successful completion of this course the student will be able to: Plan for the functional requirements of an industrial building based on NBC: 2016. Design industrial structures such as gantry girders. Analyse and design bracket connections. Design of self-supporting chimneys. Analyse and evaluate the design requirements of a transmission tower. Planning and Functional Requirements: Classification of buildings based on NBC: 2015, planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC: 2015, protection against noise and vibration. UNIT-I 12HOURS Planning and Functional Requirements: Classification of buildings based on NBC: 2015, protection against noise and vibration. UNIT-II Industrial Buildings: Design of steel gantry girders, design of bolted and welded bracket connections. UNIT-II 12HOURS Power Plant Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of steel Structures", Oxford University Press, December 2015. Duggal S.K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. Duggal S.K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. Duggal S.K., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018. 	COURSE OBJECTIVE	S: Student will be able to learn				
 To analyse and design bracket connections. To design storage structures such as bunkers and silos. To design of self-supporting chimneys. To analyse and evaluate the design requirements of a transmission tower. COURSE OUTCOME: After successful completion of this course the student will be able to: Plan for the functional requirements of an industrial building based on NBC: 2016. Design industrial structures such as gantry girders. Analyse and design bracket connections. Design storage structures such as bunkers and silos. Design of self-supporting chimneys. Analyse and evaluate the design requirements of a transmission tower. Planning and Functional Requirements: Classification of buildings based on NBC: 2015, planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC: 2015, planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC: 2015, planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC: 2015, planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC: 2017, planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC: 2017, protection against noise and vibration. UNIT-II 12HOURS Industrial Buildings: Design of steel gantry girders, design of bolted and welded bracket connections. UNIT-IV 12HOURS Transmission Line Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of steel Structures", Oxford University Press, December 2015. 2. Duggal S. K., "Limit State Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. 3. Duggal S. K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. 3. Duggal	1. To plan for the fu	nctional requirements of an industrial buildir	ng based on N	BC: 2016.		
 4. To design storage structures such as bunkers and silos. 5. To design of self-supporting chimneys. 6. To analyse and evaluate the design requirements of a transmission tower. COURSE OUTCOME: After successful completion of this course the student will be able to: Plan for the functional requirements of an industrial building based on NBC: 2016. Design industrial structures such as gantry girders. Analyse and design bracket connections. Design of self-supporting chimneys. Analyse and evaluate the design requirements of a transmission tower. Planning and evaluate the design requirements of a transmission tower. IPLANDER Planning and Functional Requirements: Classification of buildings based on NBC: 2015, planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC: 2015, protection against noise and vibration. UNIT-II Industrial Buildings: Design of steel gantry girders, design of bolted and welded bracket connections. UNIT-IU IPLOURS Power Plant Structures: Types of power plants, design of bunkers and silos based on IS 9178:1979. UNIT-IV IPLOURS Transmission Line Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of Steel Structures," Acford University Press, December 2015. Duggal S.K., "Limit State Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2019. Chandra R., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. Chandra R., "Design of steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2019. 	2. To design industr	ial structures such as gantry girders.				
 5. To design of self-supporting chimneys. 6. To analyse and evaluate the design requirements of a transmission tower. COURSE OUTCOME: After successful completion of this course the student will be able to: Plan for the functional requirements of an industrial building based on NBC: 2016. Design industrial structures such as gantry girders. Analyse and design bracket connections. Design of self-supporting chimneys. Analyse and evaluate the design requirements of a transmission tower. Planning and Functional Requirements: Classification of buildings based on NBC:2015, planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC: 2015, Protection against noise and vibration. UNIT-II I2HOURS Industrial Buildings: Design of steel gantry girders, design of bolted and welded bracket connections. Ower Plant Structures: Types of power plants, design of bunkers and silos based on IS 9178:197. CUNIT-IV I2HOURS Transmission Line Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of Steel Structures", Oxford University Press, December 2015. Duggal S. K., "Limit State Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2019. Chandra R., "Design of Steel Structures," Kanard Book House, New Delhi, 2019. 	3. To analyse and d	esign bracket connections.				
 6. To analyse and evaluate the design requirements of a transmission tower. COURSE OUTCOME: After successful completion of this course the student will be able to: Plan for the functional requirements of an industrial building based on NBC: 2016. Design industrial structures such as gantry girders. Analyse and design bracket connections. Design of self-supporting chimneys. Analyse and evaluate the design requirements of a transmission tower. Planning and Functional Requirements: Classification of buildings based on NBC: 2015, planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC: 2015, Protection against noise and vibration. UNIT-II I2HOURS Industrial Buildings: Design of steel gantry girders, design of bolted and welded bracket connections. UNIT-II I2HOURS Power Plant Structures: Types of power plants, design of bunkers and silos based on IS 9178:1979. UNIT-IV I2HOURS Reference BOOKS Subramanian N., "Design of Steel Structures", Oxford University Press, December 2015. Duggal S.K., "Limit State Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2019. Chandra R., "Design of Steel Structures," Actional material building Ltd., New Delhi, 2014. Duggal S.K., "Design of Steel Structures," Actional File Structures, New Delhi, 2018. 	4. To design storage	e structures such as bunkers and silos.				
COURSE OUTCOME: After successful completion of this course the student will be able to: 1. Plan for the functional requirements of an industrial building based on NBC: 2016. 2. Design industrial structures such as gantry girders. 3. Analyse and design bracket connections. 4. Design of self-supporting chirmeys. 6. Analyse and evaluate the design requirements of a transmission tower. UNIT-I UNIT-I Planning and Functional Requirements: Classification of buildings based on NBC: 2015, planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC: 2015, Protection against noise and vibration. UNIT-II 12HOURS Industrial Buildings: Design of steel gantry girders, design of bolted and welded bracket connections. UNIT-II 12HOURS Power Plant Structures: Types of power plants, design of bunkers and silos based on IS 9178:1979. UNIT-IV 12HOURS Transmission Line Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of Steel Structures", Oxford University Press, December 2015. 2 Duggal S.K., "Limit State Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. 3.	5. To design of self	supporting chimneys.				
 Plan for the functional requirements of an industrial building based on NBC: 2016. Design industrial structures such as gantry girders. Analyse and design bracket connections. Design of self-supporting chimmeys. Analyse and evaluate the design requirements of a transmission tower. Planning and Functional Requirements: Classification of buildings based on NBC: 2015, planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC: 2015, Protection against noise and vibration. Image: Design of steel gantry girders, design of bolted and welded bracket connections. Ower Plant Structures: Types of power plants, design of bunkers and silos based on IS 9178:1979. UNIT-IV 12HOURS Reference BOOKS 12HOURS Reference BOOKS 12HOURS Reference BOOKS 12HOURS Subtramanian N., "Design of Steel Structures", Oxford University Press, December 2015. 0. Duggal S.K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2019. 4. Chandra R., "Design of steel structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. 4.	6. To analyse and e	valuate the design requirements of a transmiss	sion tower.			
 Plan for the functional requirements of an industrial building based on NBC: 2016. Design industrial structures such as gantry girders. Analyse and design bracket connections. Design of self-supporting chimmeys. Analyse and evaluate the design requirements of a transmission tower. Planning and Functional Requirements: Classification of buildings based on NBC: 2015, planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC: 2015, Protection against noise and vibration. Image: Design of steel gantry girders, design of bolted and welded bracket connections. Ower Plant Structures: Types of power plants, design of bunkers and silos based on IS 9178:1979. UNIT-IV 12HOURS Reference BOOKS 12HOURS Reference BOOKS 12HOURS Reference BOOKS 12HOURS Subtramanian N., "Design of Steel Structures", Oxford University Press, December 2015. 0. Duggal S.K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2019. 4. Chandra R., "Design of steel structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. 4.	COURSE OUTCOME.	After successful completion of this course th	e student wil	be able to		
 Design industrial structures such as gantry girders. Analyse and design bracket connections. Design storage structures such as bunkers and silos. Design of self-supporting chimneys. Analyse and evaluate the design requirements of a transmission tower. I2HOURS Planning and Functional Requirements: Classification of buildings based on NBC:2015, planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC: 2015, Protection against noise and vibration. UNIT-II I2HOURS Industrial Buildings: Design of steel gantry girders, design of bolted and welded bracket connections. UNIT-III I2HOURS Power Plant Structures: Types of power plants, design of bunkers and silos based on IS 9178:1979. UNIT-IV I2HOURS Transmission Line Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of Steel Structures", Oxford University Press, December 2015. Subramanian N., "Design of Steel Structures", McGraw Hill Education (India) Ltd., New Delhi, 2014. Duggal S.K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. 		-				
 3. Analyse and design bracket connections. 4. Design storage structures such as bunkers and silos. 5. Design of self-supporting chimneys. 6. Analyse and evaluate the design requirements of a transmission tower. Planning and Functional Requirements: Classification of buildings based on NBC:2015, planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC: 2015, Protection against noise and vibration. UNIT-II 12HOURS Industrial Buildings: Design of steel gantry girders, design of bolted and welded bracket connections. UNIT-III 12HOURS Power Plant Structures: Types of power plants, design of bunkers and silos based on IS 9178:1979. VIT-IV 12HOURS Transmission Line Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of Steel Structures", Oxford University Press, December 2015. 2. Duggal S. K., "Limit State Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. 3. Duggal S. K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. 4. Chandra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018. 			ased off fibe	. 2010.		
 4. Design storage structures such as bunkers and silos. 5. Design of self-supporting chimneys. 6. Analyse and evaluate the design requirements of a transmission tower. UNIT-I 12HOURS Planning and Functional Requirements: Classification of buildings based on NBC:2015, planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC: 2015, Protection against noise and vibration. UNIT-II 12HOURS Industrial Buildings: Design of steel gantry girders, design of bolted and welded bracket connections. UNIT-III 12HOURS Power Plant Structures: Types of power plants, design of bunkers and silos based on IS 9178:197. CUNIT-IV 12HOURS Transmission Line Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of Steel Structures", Oxford University Press, December 2015. Subramanian N., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. Duggal S.K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. Chandra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018. 	e					
 5. Design of self-supporting chimneys. 6. Analyse and evaluate the design requirements of a transmission tower. I2HOURS Planning and Functional Requirements: Classification of buildings based on NBC:2015, planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC: 2015, Protection against noise and vibration. UNIT-II I2HOURS Industrial Buildings: Design of steel gantry girders, design of bolted and welded bracket connections. UNIT-III I2HOURS Power Plant Structures: Types of power plants, design of bunkers and silos based on IS 9178:1979. UNIT-IV I2HOURS Transmission Line Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of Steel Structures", Oxford University Press, December 2015. Subramanian N., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. Duggal S.K., "Limit State Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. Chandra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018. 	•	-				
 6. Analyse and evaluate the design requirements of a transmission tower. I2HOURS Planning and Functional Requirements: Classification of buildings based on NBC:2015, planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC: 2015, Protection against noise and vibration. UNIT-II I2HOURS Industrial Buildings: Design of steel gantry girders, design of bolted and welded bracket connections. UNIT-III I2HOURS Power Plant Structures: Types of power plants, design of bunkers and silos based on IS 9178:1979. Infussion Line Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of Steel Structures", Oxford University Press, December 2015. Subramanian N., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. Duggal S.K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. Chandra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018. 						
UNIT-I 12HOURS Planning and Functional Requirements: Classification of buildings based on NBC:2015, planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC: 2015, Protection against noise and vibration. Industrial Buildings: Design of steel gantry girders, design of bolted and welded bracket connections. UNIT-II 12HOURS Industrial Buildings: Design of steel gantry girders, design of bolted and welded bracket connections. 12HOURS Power Plant Structures: Types of power plants, design of bunkers and silos based on IS 9178:1979. 12HOURS Transmission Line Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of steel Structures", Oxford University Press, December 2015. 2. Nuggal S. K., "Limit State Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. 3. Duggal S.K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2019. 4. Chandra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018. 3.	e		n towar			
Planning and Functional Requirements: Classification of buildings based on NBC:2015, planning for layout requirements regarding Lighting, Ventilation and Fire Safety based on NBC: 2015, Protection against noise and vibration. UNIT-II 12HOURS Industrial Buildings: Design of steel gantry girders, design of bolted and welded bracket connections. UNIT-III 12HOURS Power Plant Structures: Types of power plants, design of bunkers and silos based on IS 9178:1979. UNIT-IV 12HOURS Transmission Line Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of steel Structures", Oxford University Press, December 2015. 2. Duggal S. K., "Limit State Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. 3. Duggal S.K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. 4. Chandra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018.	0. Analyse and eval	uate the design requirements of a transmissio	li tower.			
requirements regarding Lighting, Ventilation and Fire Safety based on NBC: 2015, Protection against noise and vibration. Industrial Buildings: Design of steel gantry girders, design of bolted and welded bracket connections. UNIT-II I2HOURS Power Plant Structures: Types of power plants, design of bunkers and silos based on IS 9178:1979. UNIT-IV 12HOURS Transmission Line Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of steel Structures", Oxford University Press, December 2015. 2. Duggal S. K., "Limit State Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. 3. Duggal S. K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. 4. Chandra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018.		UNIT-I			12HO	URS
vibration. UNIT-II 12HOURS Industrial Buildings: Design of steel gantry girders, design of bolted and welded bracket connections. 12HOURS Power Plant Structures: Types of power plants, design of bunkers and silos based on IS 9178:1979. 12HOURS Power Plant Structures: Types of power plants, design of bunkers and silos based on IS 9178:1979. 12HOURS Transmission Line Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of self-supporting chimney. 12HOURS REFERENCE BOOKS . . 1. Subramanian N., "Design of Steel Structures", Oxford University Press, December 2015. . 2. Duggal S. K., "Limit State Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. . 3. Duggal S.K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. . 4. Chandra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018.	Planning and Function	al Requirements: Classification of building	gs based on	NBC:2015	, planning	for layout
UNIT-II 12HOURS Industrial Buildings: Design of steel gantry girders, design of bolted and welded bracket connections. UNIT-III 12HOURS 12HOURS Power Plant Structures: Types of power plants, design of bunkers and silos based on IS 9178:1979. 12HOURS Transmission Line Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of self-supporting chimney. 12HOURS REFERENCE BOOKS . Subramanian N., "Design of Steel Structures", Oxford University Press, December 2015. 2. Duggal S. K., "Limit State Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. 2014. 3. Duggal S.K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. 4. 4. Chandra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018.		ighting, Ventilation and Fire Safety based	on NBC: 20	15, Protecti	on against	noise and
UNIT-III 12HOURS Power Plant Structures: Types of power plants, design of bunkers and silos based on IS 9178:1979. 12HOURS UNIT-IV 12HOURS Transmission Line Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of self-supporting chimney. 12HOURS REFERENCE BOOKS . 1. Subramanian N., "Design of Steel Structures", Oxford University Press, December 2015. 2. 2. Duggal S. K., "Limit State Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. 3. 3. Duggal S.K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. 4. 4. Chandra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018. 3.		UNIT-II			12HO	URS
Power Plant Structures: Types of power plants, design of bunkers and silos based on IS 9178:1979. UNIT-IV 12HOURS Transmission Line Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of self-supporting chimney. REFERENCE BOOKS 1. Subramanian N., "Design of Steel Structures", Oxford University Press, December 2015. 2. 2. Duggal S. K., "Limit State Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. 3. 3. Duggal S.K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. 4. 4. Chandra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018.	Industrial Buildings: D	esign of steel gantry girders, design of bolted	and welded	bracket con	nections.	
UNIT-IV 12HOURS Transmission Line Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of self-supporting chimney. Reference Books 1. Subramanian N., "Design of Steel Structures", Oxford University Press, December 2015. Duggal S. K., "Limit State Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. 3. Duggal S. K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. 4. Chandra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018.						URS
 Transmission Line Structures And Chimneys: Analysis and design requirements of transmission towers, Sag and Tension calculations, Design of self-supporting chimney. REFERENCE BOOKS Subramanian N., "Design of Steel Structures", Oxford University Press, December 2015. Duggal S. K., "Limit State Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. Duggal S.K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. Chandra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018. 	Power Plant Structures	Types of power plants, design of bunkers an	d silos based	on IS 9178	3:1979.	
 Tension calculations, Design of self-supporting chimney. REFERENCE BOOKS Subramanian N., "Design of Steel Structures", Oxford University Press, December 2015. Duggal S. K., "Limit State Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. Duggal S.K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. Chandra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018. 		UNIT-IV			12HO	OURS
 Subramanian N., "Design of Steel Structures", Oxford University Press, December 2015. Duggal S. K., "Limit State Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. Duggal S.K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. Chandra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018. 			requirements	of transmi	ssion tower	rs, Sag and
 Subramanian N., "Design of Steel Structures", Oxford University Press, December 2015. Duggal S. K., "Limit State Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. Duggal S.K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. Chandra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018. 	REFERENCE BOOKS					
 Duggal S. K., "Limit State Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2014. Duggal S.K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. Chandra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018. 		"Design of Steel Structures" Oxford Univers	sity Press De	cember 20	15.	
 Duggal S.K., "Design of Steel Structures," McGraw Hill Education (India) Ltd., New Delhi, 2009. Chandra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018. 	2. Duggal S. K., "L	C	•			v Delhi,
4. Chandra R., "Design of steel structure Vol-2", Standard Book House, New Delhi, 2018.		sign of Steel Structures," McGraw Hill Educ	ation (India)	Ltd., New]	Delhi, 2009).
		-	, ,			
		-o		, 2010		

- 6. IS 9178: 1979
- 7. IS 6533: 1989
- 8. SP 6: 1964
- 9. IS 875:2015
- 10. IS 1893 (Part-4): 2015
- 11. NBC: 2016

Mapping of Course Outcomes with programme Outcomes

Course Code	POS/C Os	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4
	CO1	3	2	3	3	1						3		3	3	2	3
	CO2	3	2	3	3	3						3		3	3	3	3
M22TB0 201	CO3	3	2	3	3	3						3		3	3	3	3
	CO4	3	2	3	3	3						3		3	3	3	3
	CO5	3	2	3	3	3						3		3	3	3	3
	CO6	3	2	3	3	1						3		3	3	2	3

M22TB0202			L	Т	Р	С
Duration: 16weeks	ADVANC	CED DESIGN OF PRESTRESSED CONCRETE	2	1	-	3
Internal Assessment: 50	Marks	Semester End Examination: 50 Marks (Minimum	20 Marks)	
Prerequisite: Design of P	restressed Con	crete Structures				
COURSE OBJECTIVE	ES: Student will	l be able to learn				
	•	behavior, analysis and design of end blo l resistance of pre stressed members	cks of pos	t tensioned	l membe	rs.
subjected to flexi	ure and shear.	stressed concrete tension, compression			posite b	eams for
		the design of continuous beams and sim	ple portal	frames.		
		n of pre stressed slabs and grid floors. uch as pre stressed concrete poles, railwa	v sleepers	and wall	oanels.	
			,			
COURSE OUTCOME:						
-		rse the student will be able to:				
<u> </u>		stressed concrete members. al resistance of pre stressed members				
		and design of pre-stressed tension and of	compressio	on membe	rs and a	s well as
composite beams	S.		1			
		y indeterminate structures.				
		ssed slabs and grid floors. chniques of various precast elements.				
0. Onderstand the e	oncepts and tec	sinduces of various precast cicilicities.				
		UNIT-I			12H	OURS
A	• • • •			in end blo	ck inves	stigations
Anchorage zone stresse	s in post-tensi	oned members: Introduction, stress dis	stribution	in chu bio	$\mathbf{c}\mathbf{R}, \mathbf{m} \mathbf{c}\mathbf{R}$, inguitority
0	-	oned members: Introduction, stress dis d Guyon's Methods, Comparative Analy				0
on Anchorage zone stress Shear and torsion resis	ses, Magnel and tance: Shear a	d Guyon's Methods, Comparative Analy nd principal stresses, ultimate shear resis	sis, Ancho	rage zone	reinforc	ement.
on Anchorage zone stress	ses, Magnel and tance: Shear a	d Guyon's Methods, Comparative Analy nd principal stresses, ultimate shear resis	sis, Ancho	rage zone	reinforc	ement.
on Anchorage zone stress Shear and torsion resis	ses, Magnel and tance: Shear a	d Guyon's Methods, Comparative Analy nd principal stresses, ultimate shear resis	sis, Ancho	rage zone	reinforce ar reinfo	ement.
on Anchorage zone stress Shear and torsion resist Torsion, Design of reinfo Tension members: Intr	ses, Magnel and tance: Shear and preement for tor roduction, Ties	d Guyon's Methods, Comparative Analy nd principal stresses, ultimate shear resis rsion.	sis, Ancho stance, des analysis,	rage zone	reinforce ear reinfo	ement. orcement, OURS
on Anchorage zone stress Shear and torsion resist Torsion, Design of reinfo Tension members: Intr	ses, Magnel and tance: Shear and preement for tor roduction, Ties onstruction tech	d Guyon's Methods, Comparative Analy nd principal stresses, ultimate shear resists rsion. UNIT-II , Pressure pipes – fabrication process, nniques, analysis, design and specification	sis, Ancho stance, des analysis,	rage zone	reinforce ear reinfo	ement. orcement, OURS
on Anchorage zone stress Shear and torsion resist Torsion, Design of reinfo Tension members: Intr Cylindrical containers- co Compression members: Composite beams: Intro	ses, Magnel and tance: Shear ar orcement for tor roduction, Ties onstruction tech : Introduction, I duction, types	d Guyon's Methods, Comparative Analy nd principal stresses, ultimate shear resist resion. UNIT-II , Pressure pipes – fabrication process, miques, analysis, design and specification Design specifications. of composite beams, analysis for stresses	sis, Ancho stance, des analysis, ons.	ign of she design a	reinforce ear reinfo 12He nd speci	ement. orcement, OURS fications.
on Anchorage zone stress Shear and torsion resist Torsion, Design of reinfo Tension members: Intr Cylindrical containers- co Compression members:	ses, Magnel and tance: Shear ar orcement for tor roduction, Ties onstruction tech : Introduction, I duction, types	d Guyon's Methods, Comparative Analy nd principal stresses, ultimate shear resist resion. UNIT-II , Pressure pipes – fabrication process, miques, analysis, design and specification Design specifications. of composite beams, analysis for stresses	sis, Ancho stance, des analysis, ons.	ign of she design a	reinforce ear reinfo 12Ho nd specie age, serve	ement. orcement, OURS fications.
on Anchorage zone stress Shear and torsion resist Torsion, Design of reinfor Tension members: Intr Cylindrical containers- co Compression members: Composite beams: Intro limit state. Design for fle	ses, Magnel and tance: Shear at preement for tor roduction, Ties onstruction tech : Introduction, I duction, types xural and shear	d Guyon's Methods, Comparative Analy nd principal stresses, ultimate shear resistersion. UNIT-II , Pressure pipes – fabrication process, nniques, analysis, design and specification Design specifications. of composite beams, analysis for stresses strength. UNIT-III	sis, Ancho stance, des analysis, ons.	ign of she design a	reinforce ear reinfo 12H0 nd speci nge, serve 12H0	ement. orcement, OURS fications. iceability OURS
on Anchorage zone stress Shear and torsion resist Torsion, Design of reinfor Tension members: Intr Cylindrical containers- co Compression members: Composite beams: Intro limit state. Design for fle Statically indeterminat	ses, Magnel and tance: Shear ar orcement for tor roduction, Ties onstruction tecl : Introduction, I duction, types xural and shear e Structures:	d Guyon's Methods, Comparative Analy nd principal stresses, ultimate shear resistersion. UNIT-II , Pressure pipes – fabrication process, miques, analysis, design and specification Design specifications. of composite beams, analysis for stresses strength. UNIT-III Introduction, Advantages of continuous	sis, Ancho stance, des analysis, ons. s, different	ign of she design a ial shrinka	reinforce car reinfo 12He nd specie age, serve 12He f pre-str	ement. orcement, OURS fications. iceability OURS essing in
on Anchorage zone stress Shear and torsion resist Torsion, Design of reinfor Tension members: Intr Cylindrical containers- co Compression members: Composite beams: Intro limit state. Design for fle Statically indeterminate indeterminate structures,	ses, Magnel and tance: Shear at preement for tor roduction, Ties onstruction tech : Introduction, I duction, types xural and shear e Structures: methods of at	d Guyon's Methods, Comparative Analy nd principal stresses, ultimate shear resistersion. UNIT-II , Pressure pipes – fabrication process, miques, analysis, design and specification Design specifications. Of composite beams, analysis for stresses strength. UNIT-III Introduction, Advantages of continuous nalysis for secondary moments, concorr	sis, Ancho stance, des analysis, ons. s, different	ign of she design a ial shrinka	reinforce car reinfo 12He nd specie age, serve 12He f pre-str	ement. orcement, OURS fications. iceability OURS essing in
on Anchorage zone stress Shear and torsion resist Torsion, Design of reinfor Tension members: Intr Cylindrical containers- co Compression members: Composite beams: Intro limit state. Design for fle Statically indeterminate indeterminate structures,	ses, Magnel and tance: Shear at preement for tor roduction, Ties onstruction tech : Introduction, I duction, types xural and shear e Structures: methods of at	d Guyon's Methods, Comparative Analy nd principal stresses, ultimate shear resistersion. UNIT-II , Pressure pipes – fabrication process, miques, analysis, design and specification Design specifications. of composite beams, analysis for stresses strength. UNIT-III Introduction, Advantages of continuous	sis, Ancho stance, des analysis, ons. s, different	ign of she design a ial shrinka	reinforce car reinfo 12He nd specie age, serve 12He f pre-str	ement. orcement, OURS fications. iceability OURS essing in

UNIT-IV

Precast elements: Introduction, Prestressed concrete poles manufacturing techniques, shapes and cross sectional properties, design loads, design principles. Railway sleepers-classification and Manufacturing techniques, design loads, analysis and design principles. Prestressed concrete pavements, slab and wall panels.

REFERENCE BOOKS

- 1. Design of Prestressed concrete structures Lin T.Y. and H. Burns- John Wiley & Sons, 1982.
- 2. Prestressed Concrete- N. Krishna Raju Tata McGraw Hill, 3rd edition, 1995.
- 3. Prestressed Concrete Structures- P. Dayaratnam Oxford & IBH, 5th Edition, 1991.
- 4. Prestressed Concrete- G.S. Pandit and S.P. Gupta CBS Publishers, 1993.
- 5. Prestressed concrete- N. Rajagopalan; Narosa Publishing House.2nd edition, 2005.
- 6. Design of Prestressed Concrete- A. Nilson; John Willey & Sons.2nd edition, 1987.
- 7. IS: 1343: 1980.
- 8. IS: 1343
- 9. IS:15916
- 10. IS:15917

Course	POS/C	Р	Р	Р	Р	Р	Р	Р	Р	Р	PO	PO	PS	PS	PS	PS
Code	Os	01	02	03	04	05	06	07	08	09	10	11	01	02	03	04
M22TB0	CO1	3	1	2		2		2	2	1		1	3	1	3	2
202	CO2	3		2		2		2	2	1		1	3	1	3	2
	CO3	3		2		2		2	2	1		1	3	1	3	2
	CO4	3		2		2		2	2	1		1	3	1	3	2
	CO5	3		2	1	2		2	2	2		1	3	1	3	2
	CO6	3		2	1	2		2	1	1		1	3	1	3	2

Mapping of Course Outcomes with programme Outcomes

M22TB0203	DESIGN	N OF EARTHQUAKE RESISTANT	L	Т	Р	C
Duration: 16weeks		STRUCTURES	2	1	-	3
Internal Assessment: 50) Marks	Semester End Examination: 50 Marks (Minimu	m 20 Ma	rks)	1
Prerequisite: Design of	RCC					
COURSE OBJECTIV	ES: Student	t will be able to learn				
1. To understand	the causes of	f earthquakes and its history.				
2. To understand	the seismic e	effects on structures and principles of seisr	nic desig	gn.		
3. To review varie	ous design co	odes for analysis and design of structures.				
4. To evaluate sei	smic forces	on buildings as per the latest IS Specification	ions.			
5. To understand	the behaviou	r of masonry structures subjected to earth	quake ex	citations	5.	
6. To design earth	iquake resist	ant RC structural members.				
COURSE OUTCOM	E: After succ	cessful completion of this course the stude	nt will be	e able to	•	
		istory and causes of earthquakes.			•	
		seismic design philosophy to design earthq	uake res	istant str	uctures	
-		rovisions of Indian code to seismic analys			uetures.	
•	-	mic forces in building as per provisions gi		-	ndards	
-	-	ke resistant structures in accordance with t				
Building Codes		Re resistant structures in accordance with t	ine provi	510115 01	manan	
e e		eismic failures and strengthening technique	es of mas	conry str	uctures	
0. Ability to under		issure randres and strengthening teeninque	.5 01 mas	som y su		
		UNIT-I				OURS
	-	akes -Structure of the Earth -History of th		_		
		-Earthquake Phenomena -Earthquake				
•		ate tectonics, seismographs, liquefaction,	, Types,	effects	and cor	ntrolling
factors seismic zoning	map of India	, Peak ground motion parameters.				
		UNIT-II			12H	OURS
Principles of Seismic I	Design: Cod	al provision for design – IS 1893-2016 - a	spects in	plannin	g and la	yout -
Principles of design – c	hoice of mat	terials – ductility-based design –Effect of S	Structura	ıl Irregul	arities o	n
seismic performance of	RC building	gs-Vertical irregularity and plan configura	tion prob	olems, So	eismic re	esistant
building architecture –	lateral load 1	resistant systems, building characteristics.				
						0.515.0
Forthanala Destate	Angless'-	UNIT-III	stort D	ion D		OURS
-	•	Buildings: Principles of Earthquake Resi		0	-	C C
	– Accelerati	on method Application of response spectru	um theor	y to seis	mic desi	gn of
structures.	c ·	1,1 , 1 1 1 1 1 1		1	, 10	
_		multi-storied buildings – using procedur	es (Equi	valent la	ateral fo	orce and
dynamic analysis) as pe	er 18-1893: 2	2016.				

UNIT-IV

12HOURS

Earthquake Resistant Design of Buildings: Codal provision for detailing for earthquake resistance- IS 13920-1993 – Design of Beams, Beam-Column, Shear wall with ductile detailing. Earthquake resistant design philosophy of masonry buildings. Failure pattern of masonry structures, seismic performance of masonry structures. Methods to enhance the performance of masonry structures subjected to earthquakes.

REFERENCE BOOKS

- 1. Earthquake Resistant Design of Structures, Pankaj Agrawal, Manish Shrikhande, PHI Learning
- 2. Dynamics of Structures: Theory and Applications to Earthquake Engineering, AK Chopra, Prentice Hall
- 3. Dynamics of Structures, R.W. Clough and Joseph Penzien, McGraw-Hill Education
- 4. Structural Dynamics by Mario & Paz, Springer.
- 5. Earthquake Resistant Design by David J. Dowrick, Wiley India Pvt Ltd
- 6. Elements of Earthquake Engg by Jai Krishna, A.R. Chandrasekaran, Brijesh Chandra, South Asian Publishers.
- 7. IS 1893-2002 Indian Standard Criteria for Earthquake Resistant Design of Structures.
- 8. IS 4326-1993 2002 Indian Standard for Earthquake Resistant Design and Construction of Buildings.
- 9. IS 13920-1993 2002 Ductile detailing of Reinforced Concrete Structures subjected to Seismic Forces.

Course Code	POS/C Os	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PSO 1	PSO 2	PSO 3	PSO 4
M22T	CO1	3	1		1		2	1								1
B0203	CO2	3	1			2		2					2	1	3	1
	CO3	3	1			2		2					2	1	3	1
	CO4	3	3	2	1	2		2					3	3	3	2
	CO5	3	3	2	1	2		2					3	3	3	2
	CO6	3	1	2	1	2		2					3	1	1	3

Mapping of Course Outcomes with programme Outcomes

M22TBS211		L	Т	Р	С
ouration: 16weeks	Theory of Plates and Shells	2	1	-	3
nternal Assessment: 50 N	Marks Semester End Examination: 50 M	Iarks (Mi	nimum 20) Marks)	
Prerequisite: Design of R	C Structures				
COURSE OBJECTIVE	S: Student will be able to learn				
	theory and its applications.				
	epts for different geometrical shaped plates.				
*	r Deformation theory				
	ved surfaces and Membrane theory.				
	f cylindrical shells.				
6. Beam theory of c	ylindrical shells.				
COURSE OUTCOME:	After successful completion of this course the	e student v	vill be abl	le to	
1. Achieve Knowled	lge on plate theory and its applications.				
	nergy concepts for different geometrical shap	ed plates.			
	ent-curvature relationship for First Order She	—	ation The	eorv	
	edge on curved surfaces and Membrane theory				
	e of bending theory to pipes and pressure vess	•			
	e of beam theory to cylindrical roof shells.				
117 0	UNIT-I			12 H0	OURS
Introduction to plate the	eory: Small deflection of laterally loaded thir	rectangu	lar nlates	for pure ben	dina
-	tion for various lateral loading and boundary	•	•	•	0
				1	
	UNIT-II			12 H0	OURS
0.	methods: Energy methods for rectangular and	d circular	plates wit	th clamped e	dges subjecte
to symmetric loadings.					1. 6 5.
Introduction to shear de order shear deformation the	eformation theories. Reissener - Mindlin Th	ieory, Mo	ment curv	ature relatio	nship for Firs
	UNIT-III			12 H	OURS
Introduction to curved	surfaces and classification of shells: Men	nbrane th	eory of s		
	oids, elliptic paraboloid and conoids, Axially		-	-	•
	UNIT-IV	2	C		OURS
			1.66		1
	prium equation, strain displacement relations,	governin	g anneren	tial equation.	, solution for
Bending Theory: Equilit			-	-	
Bending Theory: Equilib simply supported cylindri	prium equation, strain displacement relations,	cation to p	pipes and	pressure vess	sels.
Bending Theory: Equilib simply supported cylindri Beam theory of cylind	prium equation, strain displacement relations, cal shell, various boundary conditions. Applic rical shells: Principles of Lundgren's bear	cation to p	pipes and	pressure vess	sels.
Bending Theory: Equilit simply supported cylindri Beam theory of cylindri application to cylindrical	prium equation, strain displacement relations, cal shell, various boundary conditions. Applic rical shells: Principles of Lundgren's bear	cation to p	pipes and	pressure vess	sels.
Bending Theory: Equilit simply supported cylindri Beam theory of cylind application to cylindrical REFERENCE BOOKS	prium equation, strain displacement relations, cal shell, various boundary conditions. Applic rical shells: Principles of Lundgren's bear roof shells.	n theory,	bipes and beam ar	pressure vess aalysis, arch	els. analysis, an
Bending Theory: Equilib simply supported cylindri Beam theory of cylind application to cylindrical REFERENCE BOOKS	prium equation, strain displacement relations, cal shell, various boundary conditions. Applic rical shells: Principles of Lundgren's bear	n theory,	bipes and beam ar	pressure vess aalysis, arch	els. analysis, ar

2. Ramaswamy G.S. – "Design and Constructions of Concrete Shell Roofs" – CBS Publishers and Distributors – New Delhi – 1986.

- 3. Ugural, A. C. "Stresses in Plates and Shells", 2nd edition, McGraw-Hill, 1999.
- 4. R. Szilard, "Theory and analysis of plates classical and numerical methods", Prentice Hall, 1994
- 5. Chatterjee.B.K. "Theory and Design of Concrete Shell", Chapman & Hall, New York-third edition, 1988
- 6. Chandrashekhara K., Analysis of Concrete Shells, New Age International Edition
 - 7. Chandrashekhara K., Analysis of Plates, New Age International Edition

Course Code	POS/C Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
	CO1	3	3	3		1							2	3	3	3	2
	CO2	3	3	2	2	2							2	3	3	3	2
M22TBS	CO3	3	3	2	2	2							2	3	3	1	2
211	CO4	3	2	3	3	2							2	3	3	2	3
	CO5	3	3	3		3							2	3	3	1	3
	CO6	3	3	3									3	3	3	2	3

M22TBS212			L	Т	Р	С
Duration: 16weeks	D	ESIGN OF BRIDGES	2	1	-	3
Internal Assessment: 50) Marks	Semester End Examination: 50 Ma	arks (Min	imum 20	Marks)	
Prerequisite: Design of	RC Structura	l Elements, Design of Prestressed C	oncrete S	Structures		
COURSE OBJECTIV	ES: Student	will be able to learn				
Loading cases 2. To learn about the of 3. To learn about the of 4. To learn about T B 5. Concepts of PSC at 6. Concepts and desig COURSE OUTCOMI After successful comp	design of Slat design of T be eam Longitud nd design the m Balanced C E: letion of this of historical of ponents and I e design of Sl of T beam slat Longitudinal e Pre-Stressed	eam slab linal and Cross girder Pre-Stressed slab culvert Cantilever Bridges course the student will be able to: levelopments, site selection for brid RC Loadings ab Culvert b and Cross girder i slab culvert		-		
		UNIT-I			121	HOURS
Introduction: Historic	al Developm	ents, Site Selection for Bridges, C	Classifica	tion of Bi		
and Wing walls	C	C Class AA Tracked, Wheeled and ert for Class AA tracked and Class A		C.	Abutment	s, Piers
		UNIT-II			12H	IOURS
SF, structural design of	slab culvert v	st combination of loading, moment with reinforcement details.				
-		celed Class A Loading, Structural I				
		UNIT-III			12H	IOURS
		ign: Analysis of Cross Girder for E Loading, Structural Design of Bear				-
-		gn: Analysis of Main Girder for D Loading Using COURBON'S Met				-

56

Using HENDRY-JAEGER and MORICE-LITTLE Method for IRC Class AA Tracked vehicle only, BM & SF for different loads, Structural Design of Main Girder With Reinforcement Details

UNIT-IV

12HOURS

PSC Bridges: Introduction to Pre and Post Tensioning, Proportioning of Components, analysis and structural design of slab, analysis of main girder using COURBON's Method for IRC Class AA tracked vehicle, Calculation of pre-stressing force, cable profile and calculation of stresses, Design of End block and detailing of main girder.

Balanced Cantilever Bridge: Introduction and proportioning of components, Design of simply supported portion and design of cantilever portion, design of articulation.

REFERENCE BOOKS

- 1. "Essentials of Bridge Engineering"- D Johnson Victor, Oxford & IBH Publishing Co New Delhi
- 2. "Design of Bridges"- N Krishna Raju, Oxford & IBH Publishing Co New Delhi
- 3. "Principles and Practice of Bridge Engineering"- S P Bindra Dhanpat Rai & Sons New Delhi
- 4. IRC 6 –"**Standard Specifications And Code Of Practice For Road Bridges"-** Section II Loads and Stresses, The Indian Road Congress New Delhi
- 5. IRC 21 "**Standard Specifications And Code Of Practice For Road Bridges**"-Section III Cement Concrete (Plain and reinforced) The Indian Road Congress New Delhi
- 6. IS 456 "Indian Standard Plain and Reinforced Concrete Code of Practice"- (Fourth Revision) BIS New Delhi
- 7. IS 1343 "Indian Standard Prestressed Concrete Code of Practice"- BIS New Delhi
- 8. Raina V.K., "Concrete Bridge Practice"- Tata McGraw Hill
- 9. Bakht B & Jaeggar, "Bridge Analysis Simplified"- McGraw Hill
- 10. Ponnuswamy . S, "Bridge Engineering"- Tata McGraw Hill.

Course	POS/C	Р	Р	Р	Р	Р	Р	Р	Р	Р	PO	PO	PS	PS	PS	PS
Code	Os	01	02	03	04	05	06	07	08	09	10	11	01	O2	03	O4
M22TBS	CO1	3	1	2		2		2	2	1		1	3	1	3	2
212	CO2	3		2		2		2	2	1		1	3	1	3	2
	CO3	3		2		2		2	2	1		1	3	1	3	2
	CO4	3		2		2		2	2	1		1	3	1	3	2
	CO5	3		2		2		2	2	1		1	3	1	3	2
	CO6	3		2		2		2	2	1		1	3	1	3	2

Mapping of Course Outcomes with programme Outcomes

M22TBS213			L	Т	P	C
Duration: 16weeks	STRUCTURAL HEA	LTH MONITORING	2	1	-	3
Internal Assessment: 50 M	arks Semester End	Examination: 50 Marks (Min	nimum 20	Marks)		<u>I</u>
Prerequisite: Design of Re	inforced Concrete Structures					
COURSE OBJECTIV	ES: Student will be able t	o learn				
1. The distress in t	ne structure understanding	the causes and factors.				
2. Safety aspects o	a structure in Structural H	ealth Monitoring.				
—	and materials used in Stru					
	alth of structure using station					
	alth of structure using dyna					
•	viour of structures using re		0			
	fter successful completi			be able t	:0	
e e	tress in the structure under	e				
	y aspects of a structure in		-			
	components and materials u		lonitoring	•		
	n of structure using static fi					
	n of structure using dynami					
6. Analyse behavio	ur of structures using remo		rıng			
	UNIT	1			12H	OURS
	ors affecting Health of Stru ring: Concepts, Various M		-		ance.	
	UNIT-	Π			12H	OURS
Materials: Piezo-electr	c materials and other sma	rt materials_electro_mech	anical im	pedance	(EMI) t	echnique
adaptations of EMI tech			·····		() v	
-	ssment of Health of Struct	ure, Collapse and Investig	ation, Inv	estigation	n Mana	gement,
SHM Procedures.			,	0		
	UNIT-I	П			12H	OURS
Static Field Testing: 7	ypes of Static Tests, Sim	lation and Loading Meth	ods, sens	or syster	ns and	hardware
requirements, Static Res		C	,	5		
•	Types of Dynamic Field	Cest, Stress History Data, D	Dynamic F	Response	Method	ls
	UNIT-1	V			12H	OURS
Remote Structural H	ealth Monitoring: Introd	uction Hardware for Re	emote Da	nta Acqu	isition	Systems
	s on conventional and Rem					~jstens,
			0			
REFERENCES						
1. Balageas D., Fritze	n C.P., Güemes A., (2006),	"Structural Health Monitor	ring", Joh	n Wiley a	and Sons	š.
-	07), "Health Monitoring		-	-		
Applications", John	Wiley and Sons.			-		
3. Ou J. P., Li H. and	Duan Z. D., (2006) "Struc	tural Health Monitoring an	d Intellig	ent Infras	structure	", Taylor
and Francis Group,	London, UK.	-	-			
4. Giurglutiu V., (200	7) "Structural Health Monit	oring with Wafer Active Se	ensors", A	Academic	Press In	nc.

Course Code	POS/ COs	P 01	P 02	Р О3	P 04	Р О5	P 06	P 07	P 08	P 09	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4
M22TB	CO1	3	2		2							3		3	3		2
S213	CO2	3	2	3								3		3	3		3
	CO3	3	2	3								3		3	3		3
	CO4	3	3	3	2							3		3	3		3
	CO5	3	3	3	2							3		3	3		3
	CO6	3	3	3	2							3		3	3		3

Mapping of Course Outcomes with programme Outcomes

M22TBS221			L	Т	Р	C
Duration: 16weeks	S	TRUCTURAL MASONRY	2	1	-	3
Internal Assessment: 50) Marks	Semester End Examination: 50 M	larks (Minim	um 20 M	arks)	
Prerequisite: Knowle	dge of Alte	ernate Building Materials and Concre	te Technolog	у У		
Course Objectives: Stu	udent will b	be able to learn				
1. The varieties of	Masonry u	units and mortar joint characteristics.				
	-	ler compression.				
	-	ler Shear, Flexure and standard test pr	ocedures.			
 Load Bearing N Earthquake resi 	-	n of masonry building, confined maso	nrv			
-	Ũ	conry arches, domes and vaults	лпу,			
Course Outcome: Afte	r successfu	Il completion of this course the stude	nt will be abl	e to:		
1. Classify various	s masonry i	units and can characterise mortar joint	properties			
-	-	of masonry under compression.	FF			
3. Evaluate the be	haviour of	masonry under Shear, Flexure and kn	ow standard	test proce	dures.	
4. Design Load be	-	-				
	-	and confined masonry for Earthquake				
6. Summarise spec	cial structu	res like Masonry arches, domes and v	aults.			
		UNIT-I			12H	OURS
Introduction to Maso	nry unit a	and types: Introduction, Definition	of terms use	d in Maso	onry, ma	aterials
-	-	teristics of Brick, Types of Masonry				s such
-	-	and water absorption. Classification a				.1 1
	-	Behaviour of Masonry prism, walle masonry unit and mortar characteris		-	-	
		f strength of masonry in Indian cont			-	-
		ure theories of masonry under com				
eccentricity, effect of cu	uring, effec	t of ageing, workmanship on compre	ssive strengtl	1.		
		UNIT-II			12 H	IOURS
Flexural and shear bo	nd, flexur	al strength and shear strength: Bo	ond between	masonry	unit and	l mortar,
-		shear bond strengths, factors affecting				-
		bic strength properties of masonry in	flexure, shea	r strength	of masc	onry, test
procedures for evaluating	ng flexural	and shear strength.				
	-	under compression, shear and F		-		
	rate of te	esting standard Masonry prism. Tes	t procedure	for maso	nry wal	ls under
compression, shear.						
		UNIT-III			12 H	IOURS

Permissible stresses: Permissible compressive stress, stress reduction and shape reduction factors, increase in permissible stresses for eccentric vertical and lateral loads, permissible tensile and shear stresses.

Design of load bearing masonry buildings: Permissible compressive stress, stress reduction and shape reduction factors, increase in permissible stresses for eccentric vertical and lateral loads, permissible tensile and shear stresses, Effective height of walls and columns, opening in walls, effective length, effective thickness, slenderness ratio, eccentricity, load dispersion, arching action, lintels; Wall carrying axial load, eccentric load with different eccentricity ratios, wall with openings, freestanding wall; Design of load bearing masonry for buildings up to 3 to 8 storeys using BIS codal provisions.

UNIT-IV	12
	HOURS
Confined Masonry, Infill Masonry: Masonry Infill in RC frames, Diagonal strut concept.	
Earthquake resistant masonry buildings: Behaviour of masonry during earthquakes, concept	s and design

procedure for earthquake resistant masonry, BIS codal provisions.

Masonry arches, domes and vaults: Components and classification of masonry arches, domes and vaults, historical buildings, construction procedure.

REFERENCE BOOKS:

- 7. A. W. Hendry, Structural Masonry, Macmillan Ltd., 1998
- 8. A. W. Hendry, B. P. Sinha and S. R. Davies, An introduction to load bearing brickwork design.
- 9. Sven Sahlin, Structural Masonry, Prentice-Hall Inc., 1971
- Miha Tomezevic, Earthquake resistant design of masonry buildings, Imperial College Press, 1999, 693.852N99 5.
- 11. Robert Drysdale and A A Hamid, Masonry structures behaviour and design, Publisher: The Masonry Society, Boulder, Colorado USA, 3rd Ed. 2008
- 12. Sinha B.P & Davis S.R., "Design of Masonry structures"- E & FN Spon
- 13. Dayaratnam P, "Brick and Reinforced Brick Structures"- Oxford & IBH
- 14. Curtin, "Design of Reinforced and Prestressed Masonry"- Thomas Telford
- 15. KS Jagadish, "Structural Masonry" Wiley Publishers.

Course Code	POS/C Os	PO 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
M22TBS2	CO1	3		2	3		2	3	2	1				1			2
21	CO2	3	3	3	1	2		2	1	1		1		3	3	1	2
	CO3	3	3	3	1	2		2	1	1		1		3	3	1	2
	CO4	3	3	2	1	2		2	1					3	3	1	1
	CO5	3	3	3	1	2		2	1	1		1		3	3	1	2
	CO6	3	3	3	1	2		2	1	1		1		3	3	1	2

Mapping of Course Outcomes with programme Outcomes

M22TBS222			L	Т	Р	С
Duration: 16weeks	D	esign of Multi Storied Structures	2	1	_	3
						5
Internal Assessment: 50) Marks	Semester End Examination: 50 Marks	(Minim	um 20 M	arks)	
 COURSE OBJECTIV 1. To introduce va 2. To obtain the K 3. To know about 4. To understand t 5. To impart know 	ES: Studen arious syste for an arious syste different ty the behavious vledge about	of RCC and Steel Structures nt will be able to learn ems of Tall buildings. on materials for Tall buildings. ypes of loads, materials for the design of t our of structural members and frames. It static, dynamic and stability analysis of fects on tall structures.				
COURSE OUTCOME	C:					
		s course the student will be able to:				
-		of Tall buildings.				
*	•	for Tall buildings.				
		s of loads, materials for the design of tall s	tructures	5.		
	• -	of structural members and frames.				
5. Analyse stable						
2		ts on tall structures.				
		UNIT-I		12	HOURS	
INTRODUCTION						
Design Philosophy - a	dvantages	and disadvantages - Vertical city concep	ts - esse	ntial ame	enities s	tructural
	-	ffecting height, growth and form.	0000	initial anno	, s	ti actai ai
Loads And Materials:	Gravity lo	ading - Dead and Live load, Impact and c	construct	ion loads	. Wind l	oading -
static and dynamic appr	-					e
		UNIT-II		12	HOURS	5
Structural Systems: B	ehaviour o	f High Rise structures - Different system	for load	l distribu	tion in s	teel and
		load resistant systems - Rigid frames -				
shear walls - wall frame	es - tubular	systems - Moment resistant frames				
		UNIT-III		12	HOURS	5
Analysia of multi fuor	and Change	terror Analysis and Design minsiples a	£	. h	401 1004	tuonafan
•		tures: Analysis and Design principles o				
• • •		Member forces - displacements. Analysi			-	
	-	nalysis - Overall buckling analysis of f	rames, v	van Iran	ies, appi	oximate
methous, second order (enects of g	ravity loading, P - Δ effect.				
		UNIT-IV		12	HOURS	5
Methods of Analysis	- influenc	e of foundation instability - Elastic De	formatic	ons Dvn	amic Ar	nalvsis -
•		frames for earthquake resistant design.				
r						

REFERENCE BOOKS

- 1. Taranath .B.S., "Structural Analysis and Design of Tall Buildings", Mc Graw Hill Co. 1988
- 2. Schuller.W.G., "High Rise Building Structures", John Wiley & sons, 1977
- 3. Lynn.S. Beedle, "Advances in Tall Buildings", CBS Publishers and Distributors, New Delhi, 1996
- 4. LinT.Y. and Burry D.Stotes, " Structural Concepts and Systems for Architects and Engineers ", John Wiley, 1994.
- 5. Gupta.Y.P.,(Editor), "Proceedings of National Seminar on High Rise Structures Design and Construction Practices for Middle Level Cities", New Age International Limited, New Delhi,1995.
- 6. Lecture Notes on "Tall Buildings" Short Term Course organized by Civil Engineering Department, SRM Engg college, Kattankulathur. June 2002
- Smith .B.S. and Coull .A., "Tall Building Structure", 'Analysis and Design', John Wiley & Sons, Inc.,

PO Course POS/C PO PS PS PS PS Code Os CO1 M22TBS2 **CO2 CO3 CO4 CO5 CO6**

Mapping of Course Outcomes with programme Outcomes

M22TBS223	RELIABILITY ANALYSIS AND DESIGN	L	Т	Р	С
Duration: 16weeks	OF STRUCTURES	2	1	-	3
Internal Assessment: 50	Marks Semester End Examination: 50 M	arks (Min	imum 20 N	Marks)	•
Prerequisite: Basic Cor	cepts of Probability and Statistics				
COURSE OBJECTIVE	S: Student will be able to learn to				
1. To apply the ba	sic concepts of probability and statistics				
	sic concepts of random phenomena				
3. To interpret the	e measure of probability				
4. To apply the fo	rmulation of Mathematical Modeling using unce	rtainties			
-	plication of reliability measures to a structure				
6. To know how t	o simulate reliability measures and use as a mod	eling tool			
COURSE OUTCOME:	After successful completion of this course the student	t will be ab	le to:		
1. Apply the basic	c concepts of probability and statistics				
	c concepts of random phenomena				
3. Interpret the m	easure of probability				
	ulation of Mathematical Modeling using uncerta	inties			
	cation of reliability measures to a structure				
6. Know how to s	imulate reliability measures and use as a modeling	ng tool			
	UNIT-I			12H	IOURS
Introduction: Probat	oility mass function, probability density f	unction,	mathemat	ical exp	pectation,
Chebyshev's theorem.	Probability distributions: discrete distributions	s- binomi	al and poi	ison dist	ributions,
continuous distribution	s- normal, lognormal distributions				
	UNIT-II			12H	IOURS
	y-factor of safety, safety margin, reliability inde is-first order second moment method (FOSM), p	-			l limiting
	UNIT-III			12H	IOURS
Carlo simulation- statis	second moment method: (Hasofer-Lind's me stical experiments, confidence limits, sample siz pers with standard uniform distribution, continue	e and acc	uracy, gen	eration o	f random
	UNIT-IV			12H	IOURS
	System Reliability of series, parallel and combinate and redundant structural system.	ned syster	ns, evaluat	tion of p	robability
REFERENCE BOOK 1. Ranganathan,	S R. (1999) "Structural Reliability Analysis and	Design",	, Jaico Pu	blishing	House,

Mumbai, India.

- Devaraj V. & Ravindra R., (2017), "Reliability based Analysis and Design for Civil Engineers", I.K. International Publishing House Pvt. Ltd. India
- Ang, A. H. S., & Tang, W. H., (1984) "Probability Concepts in Engineering Planning and Design, Volume –I & II", John Wiley and Sons, Inc, New York
- 4. Haldar A. & Mahadevan S., (2000), "Probability, Reliability and Statistical Methods in Engineering Design", John Wiley and Sons. Inc.
- 5. Nathabdndu, T., Kottegoda, Rosso A.R., (1998), "Statistics, Probability and Reliability for Civil and Environmental Engineers", Mc Graw Hill International Edition, Singapore.

Mapping of Course Outcomes with programme Outcomes

Course Code	POS/ COs	P 01	P 02	P 03	P 04	Р О5	P 06	Р 07	P 08	P 09	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4
	CO1	3	2	2								3		3	3		
MAATTO	CO2	3	2	2								3		3	3		
M22TB S223	CO3	3	3	1								3		3	3		
5225	CO4	3	2	2								3		3	3		
	CO5	3	2	2								3		3	3		
	CO6	3	2	2								3		3	3		

M22TBS231	DEGLO		L	Т	P	С
Duration: 16weeks	DESIG	N OF FOUNDATION STRUCTURES	2	1	-	3
Internal Assessment: 50	Marks	Semester End Examination: 50 Marks (M	linimum 20) Marke		
Prerequisite: Geotechnic) WIAIKS)	
-	-	-				
COURSE OBJECTIVI	ES: Student w	ill be able to learn				
1. To learn method	of estimating	bearing capacity and design of shallow for	indations			
2. To learn to desig	-					
3. To learn design	of raft and pile	e foundations				
4. To learn caisson	types and stal	bility of caissons				
5. To learn types of	f machines and	d foundations				
6. To learn the med	chanism of liqu	efaction and design of block foundation				
COURSE OUTCOME						
		urse the student will be able to:				
rr						
1. Estimate bearin	g capacity and	design of shallow foundations				
2. Design different	• •	0				
3. Design of raft ar	nd pile foundat	tions				
4. Stabilize the cais	sson foundatio	ons with different types				
5. Design the mach	nine foundation	ns				
6. Implement the n	nechanism of l	iquefaction for designs				
		UNIT-I			12HO	OURS
Shallow Foundationa	Mathada for k	pearing capacity estimation, total and diffe	montial act	lamonto	of foot	ina and
						•
buoyancy raft, basement	-	ividual footings, strip footing, combined	Tooting, 1	ngiù an	d Hexib	ne mat,
buoyancy fait, basement	Tart, underprin	UNIT-II			12HO	NIRS
		arrying capacity of single and pile group			-	
Pile load testing (static,	dynamic meth	nods and data interpretation), settlement of	pile found	dation, c	ode pro	visions,
design of single pile and	pile groups, a	nd pile caps.				
		UNIT-III			12HO	OURS
Well Foundations: Typ	es, component	ts, construction methods, design methods (Terzaghi, I	S and IF	RC appro	oaches),
check for stability, base	pressure, side	pressure and deflection.				
		UNIT-IV			12HO	OURS
Machine Foundation:	Types of Mach	ines and Foundations, Soil-Foundation Int	eraction: Id	lealized	soil,	
		astic models of soil behaviour; Elastic-plas				aviour
		indation; numerical analysis of beams and		-		
foundation.		, <u>,</u>		0		

REFERENCE BOOKS

1. A.P.S. Selvadurai, "Elastic Analysis of Soil-Foundation Interaction", Elsevier Scientific Publishing Company.

2. Braja M. Das, "Principles of Foundation Engineering", PWS Publishing Company.

3. Joseph Bowles, "Foundation Analysis and Design", McGraw-Hill Book Company.

4. V.N.S. Murthy, "Advanced Foundation Engineering", CBS Publishers and Distributors. A joint venture by IISc and IITs, funded by MH

Mapping of Course Outcomes with programme Outcomes

Course Code	POS/C Os	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PS O1	PS O2	PS 03	PS O4
		2	-	2	-	2	v	ว	°)	1	10	1	2	1	2	2. 2
	CO1	3	1	Z		Z		Z	Z	1		1	3	1	3	2
	CO2	3		2		2		2	2	1		1	3	1	3	2
M22TBS23	CO3	3		2		2		2	2	1		1	3	1	3	2
1	CO4	3		2		2		2	2	1		1	3	1	3	2
	CO5	2	1	3				2				2		1	3	2
	CO6	1	2	3		2								1	3	2

M22TBS232	Design of Electrical Transmission	L	Т	Р	С
Duration: 16weeks	Structures and Foundations	2	1	-	3

Internal Assessment: 50 Marks Semester End Examination: 50 Marks (Minimum 20 Marks)

PREREQUISITE: Structural Analysis, Design of Reinforced Concrete, Steel and Prestressed Concrete Structures

COURSE OBJECTIVES:

- 1. To become familiar with the history and importance of electrical transmission structures and systems.
- 2. To become familiar with the American and Indian Codes of Practice applicable to electrical transmission towers and foundations.
- 3. To be able to analyze electrical transmission structures by the various methods including the use of computer program (software).
- 4. To be able to design electrical transmission structures in accordance with American and Indian Practices.
- 5. To be able to select the appropriate type of foundation for transmission structures and design it in accordance with American and Indian Practices.
- 6. To become familiar with the process of assembling the design deliverables for a project and the current research relevant to transmission structures.

COURSE OUTCOMES:

After successful completion of the course, the student is

- 1. Familiar with the history and importance of electrical transmission structures and systems.
- 2. Familiar with the American and Indian Codes of Practice applicable to electrical transmission towers and foundations.
- 3. Able to analyze electrical transmission structures by the various methods including the use of computer program (software).
- 4. Able to design electrical transmission structures in accordance with American and Indian Practices.
- 5. Able to select the appropriate type of foundation for transmission structures and design it in accordance with American and Indian Practices.
- 1. Familiar with the process of assembling the design deliverables for a project and the current research relevant to transmission structures.

UNIT-I	12 HOURS
INRODUCTION: History of transmission line structures, General design criteria - Structura	l and Geotechnical –
associated with transmission structures, Various Codes and Standards and Specifications go	verning material and
construction of transmission structures (American and Indian Practices), computer programs. Cu	irrent state of art.
UNIT-II	12 HOURS
STRUCTURAL ANALYSIS: Importance of form, function, material type and purpose of structure	tural configuration.
Design loads, Modelling, Structural analysis of transmission structures of wood, steel (lattice and concrete and FRP. Numerical Examples.	d polygonal poles),
STRUCTURAL DESIGN: Design of transmission structures of wood, steel (lattice and polyg	onal poles), concrete
and FRP in accordance with American and Indian Practices. Numerical Examples.	_
UNIT-III	12 HOURS
FOUNDATION DESIGN: Geotechnical data, Foundation types for transmission structures,	Design philosophy,
Design models and Computer programs. Numerical Examples	

UNIT-IV

NOTE: For units II, demonstration of structural analysis and design of transmission structures using software to be done in CAD Lab for 4 hours.

TEXT BOOK:

1. Dr. Sriram Kalaga and Dr. Prasad Yenumula, "Design of Electrical Transmission Lines – Structures and Foundations", Volume I, CRC Press, Taylor & Francis Group, London, UK, 2017

REFERENCES:

- 1. RUS Bulletins 1724E-200, 1724E-205, 1724E-214, 1724E-216, 1724E-300.
- 2. American Codes of Practice
- 3. ACI-318-2015, ACI-336-3R-93.
- 4. Alcoa (2001), SAG10TM Ver. 3.0, Users' Manual.
- 5. *LRFD Manual*, AISC, 2nd Edition
- 6. Allowable Stress Design Manual, AISC
- 7. Steel Construction Manual, AISC
- 8. Anchor Rod and Base Plate Design, AISC Steel Design Guide
- 9. ASCE Manual 7-16
- 10. ASCE Manual 48-11
- 11. ASCE Manual 74
- 12. ASCE Manual 91
- 13. ASCE Standard 10-15
- 14. ASCE Manual 104
- 15. ASCE Manual 111
- 16. ASCE Manual 113
- 17. ASCE Manual 123
- 18. ANSI O5.1 (2008)
- 19. ASCE-PCI (1987)
- 20. ASCE-PCI (1997)
- Indian Codes of Practice- IS 802 (P1/S1), IS 875, IS 5613 (P2/S1), IS 4759, IS 2062:2011, IS 12427:2001, IS 1367, IS 456, IS 800, IS 1343
- 22. CBIP Manual 323
- 23. IEEE Codes of Practice- IEEE-691 (2001), IEEE-1724 (2011), NESC (2012), National Electrical Safety Code, ANSI C-2

Mapping of Course Outcomes with programme Outcomes

Cours e Code	POS/ COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4
	CO1	2	3		3	3			2	3			3	3	3		2
	CO2	2	3	3	3	3			2	3			3	3	3		2
M22T	CO3	3	3	2	3	3				2			3	3			3
BS232	CO4	3	3	3	1	3	1					1	3	3			3
	CO5	3	3	3	1	3	1	5	5		5	1	3	3	5	5	3
	CO6	3	3	3	1	3	1	5	5		5	1	3	3	5	5	3

M22TBS233	REPAIR AND REHABILITATION OF	L	Т	Р	С
			1		2
Duration: 16weeks		2	1	-	3
Prerequisite:					
COURSE OBJECTI	VES: Student will be able to learn				
1. Behaviour of struct	ures during deterioration				
2. Mechanism of dama	age and types				
3. corrosion of steel re	einforcement and causes				
4. Inspection and diag	nosis of distress and NDT equipment				
5. Common types of re	epairs in concrete structures				
6. Guniting and Shoter	reting and underpinning				
COURSE OUTCOM	E: After successful completion of this course t	he student	will be abl	e to:	
	ation of methodology during deterioration	ne studelli			
• •	of damage for different types				
 accession for repairs Prevention of corror 					
4. Analysing the distre					
• •	in underwater structures				
-	ructures by retrofitting and/or Jacketing				
o. Strengthening of St					
Damage and Types of	UNIT-II			ion. Mec	HOUR
Damage and Types of Corrosion of Steel R	oration of Structures, Distress in Structures, Damage.			ion. Mec	hanism of
Damage and Types of Corrosion of Steel R	Damage. UNIT-II einforcement: Causes, Mechanism and Preven			ion. Mecl	hanism of HOUR le to Fire
Damage and Types of Corrosion of Steel R Fire Rating of Structur	UNIT-II einforcement: Causes, Mechanism and Preven res, Phenomena of Desiccation.	ntion. Dar	nage of Str	ion. Mec 12 uctures du 12	hanism of
Damage and Types of Corrosion of Steel R Fire Rating of Structur Inspection and Testin	UNIT-III UNIT-III UNIT-II UNIT-II UNIT-III UNIT-III	ntion. Dar	nage of Str	ion. Mec 12 uctures du 12	hanism of HOUR le to Fire
Damage and Types of Corrosion of Steel R Fire Rating of Structur Inspection and Testin	oration of Structures, Distress in Structures, Damage. UNIT-II einforcement: Causes, Mechanism and Preventres, Phenomena of Desiccation. UNIT-III ng – Symptoms and Diagnosis of Distress, Damage, Use of Sensors, Building Instrumentation	ntion. Dar	nage of Str	ion. Mecl 12 uctures du 12 T. Health	hanism of HOUR le to Fire, HOURS
Damage and Types of Corrosion of Steel R Fire Rating of Structur Inspection and Testin Monitoring of Structur	oration of Structures, Distress in Structures, Damage. UNIT-II einforcement: Causes, Mechanism and Preven res, Phenomena of Desiccation. UNIT-III ng – Symptoms and Diagnosis of Distress, Dan res, Use of Sensors, Building Instrumentation UNIT-IV	ntion. Dar	nage of Str	ion. Mec 12 uctures du 12 T. Health 12	hanism of HOUR ae to Fire, HOURS
Damage and Types of Corrosion of Steel R Fire Rating of Structur Inspection and Testin Monitoring of Structur Repair of Structure :	oration of Structures, Distress in Structures, Damage. UNIT-II einforcement: Causes, Mechanism and Preventres, Phenomena of Desiccation. UNIT-III ng – Symptoms and Diagnosis of Distress, Damares, Use of Sensors, Building Instrumentation UNIT-IV Common Types of Repairs, Repair in Concrete Shotcreting, Underpinning, Strengthening of Structures	ntion. Dar nage asses	nage of Str sment, ND [*] res, Repairs	ion. Mec 12 uctures du 12 12 T. Health 12 in Under	hanism of HOUR ae to Fire, HOURS HOURS Water
Damage and Types of Corrosion of Steel R Fire Rating of Structur Inspection and Testin Monitoring of Structur Repair of Structure : Structures, Guinting, S ,Retrofitting and Jacke REFERENCE BOOI	oration of Structures, Distress in Structures, Damage. UNIT-II einforcement: Causes, Mechanism and Preven res, Phenomena of Desiccation. UNIT-III ng – Symptoms and Diagnosis of Distress, Dan res, Use of Sensors, Building Instrumentation UNIT-IV Common Types of Repairs, Repair in Concret Shotcreting, Underpinning, Strengthening of Str eting.	ntion. Dar nage asses te Structur ructures, S	nage of Str sment, ND [*] res, Repairs	ion. Mec 12 uctures du 12 12 T. Health 12 in Under	hanism of HOUR ae to Fire HOURS HOURS Water
Damage and Types of Corrosion of Steel R Fire Rating of Structur Inspection and Testin Monitoring of Structur Repair of Structure : Structures, Guinting, S ,Retrofitting and Jacke REFERENCE BOOI 1. Concrete Tech	oration of Structures, Distress in Structures, Damage. UNIT-II einforcement: Causes, Mechanism and Preventres, Phenomena of Desiccation. UNIT-III ng – Symptoms and Diagnosis of Distress, Damares, Use of Sensors, Building Instrumentation UNIT-IV Common Types of Repairs, Repair in Concrete Shotcreting, Underpinning, Strengthening of Stretting. KS mology by A. R. Santhakumar, Oxford Universed	ntion. Dar nage asses te Structur ructures, S	nage of Str sment, ND [*] res, Repairs	ion. Mec 12 uctures du 12 12 T. Health 12 in Under	hanism of HOUR ae to Fire HOURS HOURS Water
Damage and Types of Corrosion of Steel R Fire Rating of Structur Inspection and Testin Monitoring of Structur Repair of Structure : Structures, Guinting, S ,Retrofitting and Jacke REFERENCE BOOI 1. Concrete Tech 2. Defects and D	oration of Structures, Distress in Structures, Damage. UNIT-II einforcement: Causes, Mechanism and Preventres, Phenomena of Desiccation. UNIT-III ng – Symptoms and Diagnosis of Distress, Damage. UNIT-III ng – Symptoms and Diagnosis of Distress, Damage, Use of Sensors, Building Instrumentation UNIT-IV Common Types of Repairs, Repair in Concrete Shotcreting, Underpinning, Strengthening of Streeting. KS mology by A. R. Santhakumar, Oxford Universe Deterioration in Buildings, E F & N Spon, London	ntion. Dar nage asses te Structur ructures, S sity press on	nage of Str sment, ND res, Repairs Strengthenir	ion. Mecl 12 uctures du 12 I. Health 12 in Under ng Method	hanism of HOUR ae to Fire HOURS HOURS Water
Damage and Types of Corrosion of Steel R Fire Rating of Structur Inspection and Testin Monitoring of Structure Repair of Structure : Structures, Guinting, S ,Retrofitting and Jacke REFERENCE BOOI 1. Concrete Tech 2. Defects and D 3. Non-Destructure	oration of Structures, Distress in Structures, Damage. UNIT-II einforcement: Causes, Mechanism and Preventres, Phenomena of Desiccation. UNIT-III ng – Symptoms and Diagnosis of Distress, Damares, Use of Sensors, Building Instrumentation UNIT-IV Common Types of Repairs, Repair in Concrete Shotcreting, Underpinning, Strengthening of Stretting. KS mology by A. R. Santhakumar, Oxford Universe Deterioration in Buildings, E F & N Spon, Londative Evaluation of Concrete Structures by Bunger	ntion. Dan nage asses te Structur ructures, S sity press on ey – Surre	nage of Str sment, ND ⁷ res, Repairs Strengthenir	ion. Mecl 12 uctures du 12 I. Health 12 I. Health 12 in Under ng Methoc	hanism of HOUR ae to Fire HOURS HOURS Water ls,
Damage and Types of Corrosion of Steel R Fire Rating of Structur Inspection and Testin Monitoring of Structur Repair of Structure : Structures, Guinting, S ,Retrofitting and Jacke REFERENCE BOOI 1. Concrete Tech 2. Defects and D 3. Non-Destructi 4. Maintenance,	oration of Structures, Distress in Structures, Damage. UNIT-II einforcement: Causes, Mechanism and Preventres, Phenomena of Desiccation. UNIT-III ng – Symptoms and Diagnosis of Distress, Damares, Use of Sensors, Building Instrumentation UNIT-IV Common Types of Repairs, Repair in Concrete Shotcreting, Underpinning, Strengthening of Stretting. KS mology by A. R. Santhakumar, Oxford Universe Deterioration in Buildings, E F & N Spon, London Verse Structures by Bunger Repair & Rehabilitation and Minor Works of E	ntion. Dar nage asses te Structur ructures, S sity press on ey – Surre Buildings b	nage of Str sment, ND res, Repairs Strengthenir	ion. Mecl 12 uctures du 12 I. Health 12 in Under ng Method y Press rghese, PH	hanism of HOUR he to Fire HOURS Water ls, HI.
Damage and Types of Corrosion of Steel R Fire Rating of Structur Inspection and Testin Monitoring of Structur Repair of Structure : Structures, Guinting, S ,Retrofitting and Jacke REFERENCE BOOD 1. Concrete Tech 2. Defects and D 3. Non-Destructi 4. Maintenance, 5. Maintenance a	oration of Structures, Distress in Structures, Damage. UNIT-II einforcement: Causes, Mechanism and Preventres, Phenomena of Desiccation. UNIT-III ng – Symptoms and Diagnosis of Distress, Damage. UNIT-III ng – Symptoms and Diagnosis of Distress, Damage. UNIT-III ng – Symptoms and Diagnosis of Distress, Damage. UNIT-III Information of Sensors, Building Instrumentation UNIT-IV Common Types of Repairs, Repair in Concrete Shotcreting, Underpinning, Strengthening of Structures, Underpinning, Strengthening of Structures, Deterioration in Buildings, E F & N Spon, London ive Evaluation of Concrete Structures by Bunger Repair & Rehabilitation and Minor Works of E and Repair of Civil Structures, B.L. Gupta and Jong Paris And Repair of Civil Structures, B.L. Gupta and Jong Paris And Paris And Paris And Prevention	ntion. Dar nage asses te Structur ructures, S sity press on ey – Surre Buildings I Amit Gup	nage of Str sment, ND ⁷ res, Repairs Strengthenir y University by P. C. Var ta, Standard	ion. Mecl 12 uctures du 12 In Under 12 in Under ng Method y Press rghese, PH 1 Publicati	HOURS HOURS HOURS HOURS Water Is, HI.
Damage and Types of Corrosion of Steel R Fire Rating of Structur Inspection and Testin Monitoring of Structur Repair of Structure : Structures, Guinting, S ,Retrofitting and Jacke REFERENCE BOOD 1. Concrete Tech 2. Defects and D 3. Non-Destructi 4. Maintenance, 5. Maintenance a 6. Concrete Repair	oration of Structures, Distress in Structures, Damage. UNIT-II einforcement: Causes, Mechanism and Preventres, Phenomena of Desiccation. UNIT-III ng – Symptoms and Diagnosis of Distress, Damares, Use of Sensors, Building Instrumentation UNIT-IV Common Types of Repairs, Repair in Concrete Shotcreting, Underpinning, Strengthening of Stretting. KS mology by A. R. Santhakumar, Oxford Universe Deterioration in Buildings, E F & N Spon, London Verse Structures by Bunger Repair & Rehabilitation and Minor Works of E	ntion. Dan nage asses te Structur ructures, S sity press on ey – Surre Buildings I Amit Gup npany Inc	nage of Str sment, ND ⁷ res, Repairs Strengthenir y University by P. C. Var ta, Standarc W. H. Rans	y Press rghese, PH I Publicati so, (1981)	HOURS HOURS HOURS HOURS Water Is, HI.

Mapping of Course Outcomes with programme Outcomes

Course Code	POS/C Os	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PS O1	PS O2	PS O3	PS O4
M22TES2	CO1			3			2	2	1	1			3			1
33	CO2	2	3			3	3	3			3		3			
	CO3	3		3		2	1		3	2		2	3	2		2
	CO4	3		3	3	2	1			3			3	2		2
	CO5	2	3			3	3	3			3		3			
	CO6	3		3	3	3		2	3				3			3

	221B0204	STR	UCTURAL ENGINE	ERING	L	Τ	P	С
Durati	on: 16weeks	LABOR	ATORY-II (SOFTW.	ARE LAB)	0	0	2	2
Internal	Assessment: 50) Marks	Semester End Exan	nination: 50 M	larks (Mi	nimum 20	Marks)	
Prerequ	isite: Structural	analysis ar	d design					
COUR	SE OBJECTIV	ES: Stude	nt will be able to learn					
1.	Basics of STA	AD-Pro wit	h creation of nodes, ele	ements, membe	ers, loads	, support.		
2.	Modelling and	analysis of	beams and frames usin	g STAA-Pro				
3.		-	el structures using STA					
4.			ation of nodes, element	ts, members, l	oads, sup	ports		
	-	-	ctures using ETABS					
6.	Analysis & des	ign of build	ling structures using ET	TABS				
COUR	SE OUTCOM	E: After suc	ccessful completion of t	this course the	student v	vill be abl	e to:	
1.			members with loads &					
2.			s using STAAD-Pro		-			
3.	Analyse and de	sign steel s	tructures using STAAD	D-Pro				
4.	Model element	s and mem	pers with loads and sup	ports using ET	TABS			
5.	Model building		-					
6.	Analyse and de	sign buildi	ng structures using ETA	ABS				
		E	XPERIMENTS TO B	E CARRIED	OUT			
STAAI	D PRO							
		tructural A			ar Force	and Bend	ing Mome	ent values
	Overview of S		nalysis and Design Ca		ar Force	and Bend	ing Mome	ent values
1.	Overview of S for various sup	ports and lo	nalysis and Design Ca	alculating She			ing Mome	
1.	Overview of S for various sup	ports and lo Co-ordinate	nalysis and Design Ca	alculating She			-	
1. 2.	Overview of S for various sup Introduction- O Members Sele	ports and lo Co-ordinate ct Menu	nalysis and Design Ca	alculating She Local M	lodel Ge	neration,	Creating 1	Nodes &
1. 2.	Overview of S for various sup Introduction- O Members Sele Model Editing Merge Selected	ports and lo Co-ordinate ct Menu Tools, Con I Members	nalysis and Design Ca bad types Systems, Global Vs nect Beams Along, Stro Renumber, Split Bean	alculating She Local M etch Selected I	lodel Ge Members	neration, , Intersect	Creating D Selected M	Nodes &
1. 2. 3.	Overview of S for various sup Introduction- Members Sele Model Editing Merge Selected by using Struct	ports and lo Co-ordinate ct Menu Tools, Con I Members, ure Wizard	nalysis and Design Ca pad types Systems, Global Vs nect Beams Along, Stro Renumber, Split Bean , Mini Project	alculating She Local M etch Selected I n, Break Bean	lodel Ge Members 1s at Sele	neration, , Intersect cted Node	Creating D Selected M s Creating	Nodes & Members, g Models
1. 2.	Overview of S for various sup Introduction- O Members Sele Model Editing Merge Selected by using Struct Support Specifi	ports and lo Co-ordinate ct Menu Tools, Con I Members ure Wizard fication-	nalysis and Design Ca bad types Systems, Global Vs nect Beams Along, Stro Renumber, Split Bean , Mini Project Member Property Spec	alculating She Local M etch Selected I n, Break Bean cification, Me	lodel Ge Members 1s at Sele mber Of	neration, , Intersect cted Node fset, Mat	Creating D Selected M s Creating	Nodes & Members, g Models
 1. 2. 3. 4. 	Overview of S for various sup Introduction- O Members Sele Model Editing Merge Selected by using Struct Support Specific Group Specific	ports and lo Co-ordinate ct Menu Tools, Con I Members ure Wizard fication- 1 ation Load	nalysis and Design Ca bad types Systems, Global Vs nect Beams Along, Stro Renumber, Split Bean , Mini Project Member Property Spect ling, Creating a Primary	alculating She Local M etch Selected I n, Break Bean cification, Me y Load, Addir	lodel Ge Members ns at Sele mber Off ng Self w	neration, , Intersect cted Node fset, Mat eight	Creating D Selected M s Creating cerial Spec	Nodes & Members, g Models cification
 1. 2. 3. 4. 	Overview of S for various sup Introduction- O Members Sele Model Editing Merge Selected by using Struct Support Specific Group Specific Loading, Noda	ports and lo Co-ordinate ct Menu Tools, Con I Members ure Wizard fication - N ation Load	nalysis and Design Ca bad types Systems, Global Vs nect Beams Along, Stra Renumber, Split Bean , Mini Project Member Property Spec ling, Creating a Primary mber Load, Uniform Fo	alculating She Local M etch Selected I n, Break Bean cification, Me y Load, Addir prce and Mom	lodel Ge Members ns at Sele mber Off ng Self w ent, Cond	neration, , Intersect cted Node fset, Mat eight centrated H	Creating D Selected M es Creating cerial Spec	Nodes & Members g Models cification Moment
 1. 2. 3. 4. 5. 6. 	Overview of S for various sup Introduction- O Members Sele Model Editing Merge Selected by using Struct Support Specific Loading, Noda General Guidel	ports and lo Co-ordinate ct Menu Tools, Con I Members ure Wizard fication - N ation Load	nalysis and Design Ca bad types Systems, Global Vs nect Beams Along, Stro Renumber, Split Bean , Mini Project Member Property Spect ling, Creating a Primary	alculating She Local M etch Selected I n, Break Bean cification, Me y Load, Addir prce and Mom	lodel Ge Members ns at Sele mber Off ng Self w ent, Cond	neration, , Intersect cted Node fset, Mat eight centrated H	Creating D Selected M es Creating cerial Spec	Nodes & Members, g Models cification Moment
 1. 2. 3. 4. 5. 	Overview of S for various sup Introduction- Members Sele Model Editing Merge Selected by using Struct Support Specific Loading, Noda General Guidel	ports and lo Co-ordinate ct Menu Tools, Con I Members, ure Wizard fication- 1 ation Load I Load, Me ines for De	nalysis and Design Ca bad types Systems, Global Vs nect Beams Along, Stra Renumber, Split Bean , Mini Project Member Property Spec ling, Creating a Primary mber Load, Uniform Fo	alculating She Local M etch Selected I n, Break Bean cification, Me y Load, Addir prce and Mom	lodel Ge Members ns at Sele mber Off ng Self w ent, Cond	neration, , Intersect cted Node fset, Mat eight centrated H	Creating D Selected M es Creating cerial Spec	Nodes & Members, g Models cification Moment
 1. 2. 3. 4. 5. 6. 	Overview of S for various sup Introduction- Members Sele Model Editing Merge Selected by using Struct Support Specific Loading, Noda General Guidel S Basics about th	ports and lo Co-ordinate ct Menu Tools, Con I Members ure Wizard fication - N ation Load I Load, Me ines for De	nalysis and Design Ca bad types Systems, Global Vs nect Beams Along, Stro Renumber, Split Bean , Mini Project Member Property Spect ling, Creating a Primary mber Load, Uniform Fo sign, Concrete Design	alculating She Local M etch Selected I n, Break Bean cification, Me y Load, Addir orce and Mom in STAAD.PR	lodel Ge Members ns at Sele mber Off ng Self w ent, Cond CO, Colur	neration, , Intersect cted Node fset, Mat eight centrated H nn Design	Creating D Selected M es Creating cerial Spec	Nodes & Members g Models cification Moment
1. 2. 3. 4. 5. 6. ETABS 1. 2.	Overview of S for various sup Introduction- O Members Sele Model Editing Merge Selected by using Struct Support Specific Loading, Noda General Guidel S Basics about the Introduction to	ports and lo Co-ordinate ct Menu Tools, Con I Members ure Wizard fication - N ation Load I Load, Me ines for De e ETABS. various co	nalysis and Design Ca bad types Systems, Global Vs nect Beams Along, Stra Renumber, Split Bean , Mini Project Member Property Spect ling, Creating a Primary mber Load, Uniform Fo sign, Concrete Design	Alculating She Local M etch Selected I n, Break Bean cification, Me y Load, Addir orce and Mom in STAAD.PR	lodel Ge Members ns at Sele mber Off ng Self w ent, Cond CO, Colur	neration, , Intersect cted Node fset, Mat eight centrated H nn Design	Creating D Selected M es Creating cerial Spec	Nodes & Members g Models cification Moment
1. 2. 3. 4. 5. 6. ETABS 1. 2. 3.	Overview of S for various sup Introduction- O Members Sele Model Editing Merge Selected by using Struct Support Specific Loading, Noda General Guidel S Basics about the Introduction to 2D model, anal	ports and lo Co-ordinate ct Menu Tools, Con I Members, ure Wizard fication - N ation Load I Load, Me ines for De e ETABS. various con lysis and de	nalysis and Design Ca bad types Systems, Global Vs nect Beams Along, Stro Renumber, Split Beam , Mini Project Member Property Spect ling, Creating a Primary mber Load, Uniform Fo sign, Concrete Design sign, Concrete Design	Alculating She Local M etch Selected I n, Break Bean cification, Me y Load, Addir orce and Mom in STAAD.PR d their applicat s and Frames	lodel Ge Members ns at Sele mber Off ng Self w ent, Cond CO, Colur	neration, , Intersect cted Node fset, Mat eight centrated H nn Design	Creating D Selected M es Creating cerial Spec	Nodes & Members g Models cification Moment
1. 2. 3. 4. 5. 6. ETABS 1. 2. 3. 4.	Overview of S for various sup Introduction- Members Sele Model Editing Merge Selected by using Struct Support Specific Loading, Noda General Guidel S Basics about th Introduction to 2D model, anal 3D model and	ports and le Co-ordinate ct Menu Tools, Con I Members, ure Wizard fication- N ation Load I Load, Me ines for De e ETABS. various co lysis and de analysis for	nalysis and Design Ca bad types Systems, Global Vs nect Beams Along, Stra Renumber, Split Bean , Mini Project Member Property Spec ling, Creating a Primary mber Load, Uniform Fo sign, Concrete Design s mmands of ETABS and sign for Trusses, Beam Steel and RC Building	Alculating She Local M etch Selected I n, Break Bean cification, Me y Load, Addir orce and Mom in STAAD.PR I their applicat s and Frames ss.	Iodel Ge Members ns at Sele mber Off ng Self w ent, Cond CO, Colur	neration, , Intersect cted Node fset, Mat eight centrated F nn Design	Creating D Selected M es Creating cerial Spec	Nodes & Members g Models cification Moment
1. 2. 3. 4. 5. 6. ETABS 1. 2. 3. 4. 5.	Overview of S for various sup Introduction- O Members Sele Model Editing Merge Selected by using Struct Support Specific Loading, Noda General Guidel S Basics about th Introduction to 2D model, and 3D model and Earthquake loa	ports and lo Co-ordinate ct Menu Tools, Con I Members, ure Wizard fication- N ation Load I Load, Me ines for De e ETABS. various co lysis and de analysis for d applicatio	nalysis and Design Ca bad types Systems, Global Vs nect Beams Along, Stro Renumber, Split Beam , Mini Project Member Property Spect ling, Creating a Primary mber Load, Uniform Fo sign, Concrete Design sign, Concrete Design	Alculating She Local M etch Selected I n, Break Bean cification, Me y Load, Addir orce and Mom in STAAD.PR I their applicat s and Frames ss.	Iodel Ge Members ns at Sele mber Off ng Self w ent, Cond CO, Colur	neration, , Intersect cted Node fset, Mat eight centrated F nn Design	Creating D Selected M es Creating cerial Spec	Nodes & Members, g Models cification Moment
1. 2. 3. 4. 5. 6. ETABS 1. 2. 3. 4.	Overview of S for various sup Introduction- Members Sele Model Editing Merge Selected by using Struct Support Specific Loading, Noda General Guidel S Basics about th Introduction to 2D model, anal 3D model and	ports and le Co-ordinate ct Menu Tools, Con I Members ure Wizard fication- I ation Load I Load, Me ines for De e ETABS. various co lysis and de analysis for d applicatio ping	nalysis and Design Ca bad types Systems, Global Vs nect Beams Along, Stra Renumber, Split Bean , Mini Project Member Property Spec- ling, Creating a Primary mber Load, Uniform Fo sign, Concrete Design s mmands of ETABS and sign for Trusses, Beam Steel and RC Building on to RC and steel struc	Alculating She Local M etch Selected I n, Break Bean cification, Me y Load, Addir orce and Mom in STAAD.PR I their applicat s and Frames ss.	Iodel Ge Members ns at Sele mber Off ng Self w ent, Cond CO, Colur	neration, , Intersect cted Node fset, Mat eight centrated F nn Design	Creating D Selected M es Creating cerial Spec	Nodes & Members g Models cification Moment

REFERENCE BOOKS

1. Manual of STAAD PRO

Ζ.

Course	POS/C	PO	PS	PS	PS	PS										
Code	Os	1	2	3	4	5	6	7	8	9	10	11	01	02	03	04
	CO1	3	3	3	2	3	1		1	1	1		3	3	3	1
M22TB0	CO2	3	3	3	2	3	1		1	1	1		3	3	3	1
204	CO3	3	3	3	2	3	1		1	1	1		3	3	3	1
	CO4	3	3	3	2	3	1		1	1	1		3	3	3	1
	CO5	3	3	3	2	3	1		1	1	1		3	3	3	1
	CO6	3	3	3	2	3	1		1	1	1		3	3	3	1

Mapping of Course Outcomes with programme Outcomes

Where, 1 (Low), 2 (Medium) and 3 (High) represents strength of correlation between CO and PO.

M20TB0204 Mini Project-II	Practical/ Report	0	0	2	2	2	
---------------------------	----------------------	---	---	---	---	---	--

The student is required to carry out a mini project individually on Analysis and Design of Special structures using STAAD PRO, ETABS

			III SEME	SIEK					
Sl. No	Course Code	Title of the Course	Practical /Term	Pre requisite	_	redit Cred	Contact Hours		
			Work / Sessions		L	Т	Р	Total	
1	M22TB0N01	MOOC/SWAYAM Online Course	OE	1	3	1	0	4	
2	M22TB0301	Internship with Report	Practical/ Term Work and Viva - Voce	B. TECH in Civil Engineering	2	0	2	4	
3	M22TB0302	Project Phase-I	Practical/ Report and Viva -Voce	BE / B. TI Engi	2	0	6	8	

1. Students will have to choose an online course offered in MOOC/SWAYAM/COURSERA, this course will enhance additional knowledge studying online course of student's choice

2. Students have to undergo Internship in reputed companies for a minimum period of three months and gain the field related challenges and make himself/herself industry ready

3. During third semester students will be allotted Supervisor/Guide for carrying out dissertation for the full fourth semester term. Identification of dissertation topic, deciding the objectives and Literature review will be done with the discussion with their supervisor/guide.

			IV SEME	SIEK					
Sl. No	Course Code	Title of the Course	Practical /Term Work	Pre requisite	-	redit Cred	Contact Hours		
			/ Sessions		L	Т	Р	Total	
1	M22TB0401	Dissertation Phase-II	Practical/ Thesis Submission and Viva- Voce		2	0	8	10	
2	M22TB0401	Technical Seminar With Report	Practical/ Term Work		0	0	2	2	

1. The student is required to deliver a seminar and submit a report on the latest development in Structural Engineering

2. Elaborate studies on their dissertation work with regard to experimental/analytical/software based investigations, preparing the dissertation report as per university regulations and publication of a paper in reputed journals