

11

SCHOOL OF MECHANICAL ENGINEERING

M.Tech

in

Machine Design

HAND BOOK

2019-21

Rukmini Knowledge Park Kattigenahalli, Yelahanka, Bengaluíu – 560064 www.reva.edu.in

School of Mechanical Engineering

M.Tech. (Machine Design)

HAND BOOK

2019-2021

Approved by Board of Studies

BOS/ME/MDD/2014-15/01/30-09-2014 BOS/ME/MDD/2015-16/02/30-04-2015 BOS/ME/MDD/2016-17/03/23-05-2016 BOS/ME/MDD/2017-18/04/13-05-2017 BOS/ME/MMD/ 2018-19/05/06-06-2018 BOS/ME/MMD/2019-20/05/13-04-2019

Rukmini Knowledge Park, Kattigenahalli, Yelahanka, Bangalore - 560 064 PhoneNo:+91- 80 4696 6966, +91- 90211 90211

Rukmini Educational Charitable Trust

www.reva.edu.in

Chancellor's Message

"Education is the most powerful weapon which you can use to change the world."

- Nelson Mandela.

There was a time when survival depended on just the realization of physiological needs. We are indeed privileged to exist in a time when 'intellectual gratification' has become indispensable. Information is easily attainable for the soul that is curious enough to go look for it. Technological boons enable information availability anywhere anytime. The difference, however, lies between those who look for information and those who look for knowledge.

It is deemed virtuous to serve seekers of knowledge and as educators it is in the ethos at REVA University to empower every learner who chooses to enter our portals. Driven by our founding philosophy of 'Knowledge is Power', we believe in building a community of perpetual learners by enabling them to look beyond their abilities and achieve what they assumed impossible.

India has always been beheld as a brewing pot of unbelievable talent, acute intellect and immense potential. All it takes to turn those qualities into power is a spark of opportunity. Being at a University is an exciting and rewarding experience with opportunities to nurture abilities, challenge cognizance and gain competence.

For any University, the structure of excellence lies in the transitional abilities of its faculty and its facility. I'm always in awe of the efforts that our academic board puts in to develop the team of subject matter experts at REVA. My faculty colleagues understand our core vision of empowering our future generation to be ethically, morally and intellectually elite. They practice the art of teaching with a student-centered and transformational approach. The excellent infrastructure at the University, both educational and extra-curricular, magnificently demonstrates the importance of ambience in facilitating focused learning for our students.

A famous British politician and author from the 19th century - Benjamin Disraeli, once said 'A University should be a place of light, of liberty and of learning'. Centuries later this dictum still inspires me and I believe, it takes team-work to build successful institutions. I welcome you to REVA University to join hands in laying the foundation of your future with values, wisdom and knowledge.

Dr. P. Shyama Raju The Founder and Hon'ble Chancellor, REVA University

Vice-Chancellor's Message

The last two decades have seen a remarkable growth in higher education in India and across the globe. The move towards inter-disciplinary studies and interactive learning have opened up several options as well as created multiple challenges. India is at a juncture where a huge population of young crowd is opting for higher education. With the tremendous growth of privatization of education in India, the major focus is on creating a platform for quality in knowledge enhancement and bridging the gap between academia and industry.

A strong believer and practitioner of the dictum "Knowledge is Power", REVA University has been on the path of delivering quality education by developing the young human resources on the foundation of ethical and moral values, while boosting their leadership qualities, research culture and innovative skills. Built on a sprawling 45 acres of green campus, this 'temple of learning' has excellent and state-of-the-art infrastructure facilities conducive to higher teaching-learning environment and research. The main objective of the University is to provide higher education of global standards and hence, all the programs are designed to meet international standards. Highly experienced and qualified faculty members, continuously engaged in the maintenance and enhancement of studentcentric learning environment through innovative pedagogy, form the backbone of the University.

All the programs offered by REVA University follow the Choice Based Credit System (CBCS) with Outcome Based Approach. The flexibility in the curriculum has been designed with industry-specific goals in mind and the educator enjoys complete freedom to appropriate the syllabus by incorporating the latest knowledge and stimulating the creative minds of the students. Bench marked with the course of studies of various institutions of repute, our curriculum is extremely contemporary and is a culmination of efforts of great think-tanks - a large number of faculty members, experts from industries and research level organizations. The evaluation mechanism employs continuous assessment with grade point averages. We believe sincerely that it will meet the aspirations of all stakeholders – students, parents and the employers of the graduates and postgraduates of REVA University.

At REVA University, research, consultancy and innovation are regarded as our pillars of success. Most of the faculty members of the University are involved in research by attracting funded projects from various research level organizations like DST, VGST, DBT, DRDO, AICTE and industries. The outcome of the research is passed on to students through live projects from industries. The entrepreneurial zeal of the students is encouraged and nurtured through EDPs and EACs.

REVA University has entered into collaboration with many prominent industries to bridge the gap between industry and University. Regular visits to industries and mandatory internship with industries have helped our students. REVA University has entered into collaboration with many prominent industries to bridge the gap between industry and University. Regular visits to industries and mandatory internship with industries have helped our students become skilled with relevant to industry requirements. Structured training programs on soft-skills and preparatory training for competitive exams are offered here to make students more employable. 100% placement of eligible students speaks the effectiveness of these programs. The entrepreneurship development activities and establishment of "Technology Incubation Centers" in the University extend full support to the budding entrepreneurs to nurture their ideas and establish an enterprise.

With firm faith in the saying, "Intelligence plus character –that is the goal of education" (Martin Luther King, Jr.), I strongly believe REVA University is marching ahead in the right direction, providing a holistic education to the future generation and playing a positive role in nation building. We reiterate our endeavor to provide premium quality education accessible to all and an environment for the growth of over-all personality development leading to generating "GLOBAL PROFESSIONALS".

Welcome to the portals of REVA University!

Dr. S. Y. Kulkarni Vice-Chancellor, REVA University

Director's Message

It is my pleasure to welcome you to the PG Studies under the School of Mechanical Engineering. M. Tech. in Machine Design–a postgraduate program is designed to create motivated, innovative, creative and thinking graduates to fill the roles of Machine Designers who can conceptualize, design, analyze and develop machines to meet the modern day requirements.

Students completing M. Tech. in Machine Design program will have ample opportunities in premier research organizations like DRDO, ISRO, HAL, NAL and other CSIR institutions. Many OEM's, MNCs and private

companies like SAFRAN, ALTAIR, GE, BOEING, AIRBUS, TATA MOTORS etc., are looking for the dynamic post-graduate candidates specialized in design aspects with CAE based software packages.

This handbook presents the M.Tech. Curriculum for Machine Design Program. The program is of 2 years duration and spilt into 4 semesters. The student admitting to this program has to earn 96 credits spread across four semesters to obtain the M.Tech degree.

The curriculum caters to and has relevance to local, regional, national, global developmental needs. Maximum number of courses are integrated with cross cutting issues with relevant to professional ethics, gender, human values, environment and sustainability.

The important features of M.Tech. in Machine Design are as follows:

- 1. Choice Based Course Selection (CBCS system).
- 2. Curriculum framed and taught by senior most faculty members.
- 3. All theory subjects integrated with practical component.
- 4. Long term internship.
- 5. Opportunity to pursue MOOC course as per interest.
- 6. Research based academic projects.

I am sure that students choosing M.Tech. (Machine Design) will benefit a lot from the industry based curriculum, teaching and learning environment, vast infrastructure, teacher's involvement and guidance.

I wish all PG students a pleasant and exploring stay in REVA University and grand success in their career.

Dr. K. S. Narayanaswamy Director-School of Mechanical Engineering

CONTENTS

Sl. No.	Particulars	Page No.
1	Message from the Honorable Chancellor	2
2	Message from the Vice- Chancellor	3
3	Preface from the Director	5
4	Rukmini Educational Charitable Trust	7
5	About REVA University	8
6	About School of Mechanical Engineering - Vision - Mission - Advisory Board	13
7	M.Tech. in Machine Design Program Program Overview	16
8	Program Educational Objectives	17
9	Program Outcomes	
10	Program Specific Outcomes	18
11	M.Tech in Machine Design Program Scheme of Instructions 	19
12	 Detailed Syllabus Prerequisites Course Objective Course Outcomes Course Content (Unit-1,2,3,4) Text books Reference books Mapping of COs and POs 	23
13	Career Development and Placement	86

RUKMINI EDUCATIONAL CHARITABLE TRUST

It was the dream of late Smt. Rukmini Shyama Raju to impart education to millions of underprivileged children as she knew the importance of education in the contemporary society. The dream of Smt. Rukmini Shyama Raju came true with the establishment of Rukmini Educational Charitable Trust (RECT), in the year 2002. Rukmini Educational Charitable Trust (RECT) is a Public Charitable Trust, set up in 2002 with the objective of promoting, establishing and conducting academic activities in the fields of Arts, Architecture, Commerce, Education, Engineering, Environmental Science, Legal Studies, Management and Science & Technology, among others. In furtherance of these objectives, the Trust has set up the REVA Group of Educational Institutions comprising of REVA Institute of Technology & Management (RITM), REVA Institute of Science and Management (RISM), REVA Institute of Management Studies (RIMS), REVA Institute of Education (RIE), REVA First Grade College (RFGC), REVA Independent PU College at Kattigenahalli, Ganganagar and Sanjaynagar and now REVA University. Through these institutions, the Trust seeks to fulfill its vision of providing world class education and create abundant opportunities for the youth of this nation to excel in the areas of Arts, Architecture, Commerce, Education, Engineering, Environmental Science, Legal Studies, Management and Science & Technology.

Every great human enterprise is powered by the vision of one or more extraordinary individuals and is sustained by the people who derive their motivation from the founders. The Chairman of the Trust is Dr. P. Shyama Raju, a developer and builder of repute, a captain of the industry in his own right and the Chairman and Managing Director of the DivyaSree Group of companies. The idea of creating these top notched educational institutions was born of the philanthropic instincts of Dr. P. Shyama Raju to do public good, quite in keeping with his support to other socially relevant charities such as maintaining the Richmond road park, building and donating a police station, gifting assets to organizations providing accident and trauma care, to name a few.

The Rukmini Educational Charitable Trust drives with the main aim to help students who are in pursuit of quality education for life. REVA is today a family of ten institutions providing education from PU to Post Graduation and Research leading to PhD degrees. REVA has well qualified experienced teaching faculty of whom majority are doctorates. The faculty is supported by committed administrative and technical staff. Over 15,000 students study various courses across REVA's three campuses equipped with exemplary state-of-the-art infrastructure and conducive environment for the knowledge driven community.

ABOUT REVA UNIVERSITY

REVA University has been established under the REVA University Act, 2012 of Government of Karnataka and notified in Karnataka State Gazette dated 7thFebruary, 2013. The University is empowered by UGC to award degrees any branch of knowledge under Sec.22 of the UGC Act. The University is a Member of Association of Indian Universities, New Delhi. The main objective of the University is to prepare students with knowledge, wisdom and patriotism to face the global challenges and become the top leaders of the country and the globe in different fields.

REVA University located in between Kempegowda International Airport and Bangalore city, has a sprawling green campus spread over 45 acres of land and equipped with state-of-the-art infrastructure that provide conducive environment for higher learning and research. The REVA campus has well equipped laboratories, custom-built teaching facilities, fully air-conditioned library and central computer centre, the well planned sports facility with cricket ground, running track & variety of indoor and outdoor sports activities, facilities for cultural programs. The unique feature of REVA campus is the largest residential facility for students, faculty members and supportive staff.

The University is presently offering 23 Post Graduate Degree programs, 20 Degree and PG Degree programs in various branches of studies and has 12000+ students studying in various branches of knowledge at graduate and post graduate level and 431 Scholars pursuing research leading to PhD in 21 disciplines. It has 900+ well qualified, experienced and committed faculty members of whom majority are doctorates in their respective areas and most of them are guiding students pursuing research leading to PhD.

The programs being offered by the REVA University are well planned and designed after detailed study with emphasis with knowledge assimilation, applications, global job market and their social relevance. Highly qualified, experienced faculty and scholars from reputed universities / institutions, experts from industries and business sectors have contributed in preparing the scheme of instruction and detailed curricula for this program. Greater emphasis on practice in respective areas and skill development to suit to respective job environment has been given while designing the curricula. The Choice Based Credit System and Continuous Assessment Graded Pattern (CBCS – CAGP) of education has been introduced in all programs to facilitate students to opt for subjects of their choice in addition to the core

subjects of the study and prepare them with needed skills. The system also allows students to move forward under the fast track for those who have the capabilities to surpass others.

These programs are taught by well experienced qualified faculty supported by the experts from industries, business sectors and such other organizations. REVA University has also initiated many supportive measures such as bridge courses, special coaching, remedial classes, etc., for slow learners so as to give them the needed input and build in them confidence and courage to move forward and accomplish success in their career. The University has also entered into MOUs with many industries, business firms and other institutions seeking their help in imparting quality education through practice, internship and also assisting students' placements.

REVA University recognizing the fact that research, development and innovation are the important functions of any university has established an independent Research and Innovation division headed by a senior professor as Dean of Research and Innovation. This division facilitates all faculty members and research scholars to undertake innovative research projects in engineering, science & technology and other areas of study. The interdisciplinary-multidisciplinary research is given the top most priority. The division continuously liaisons between various funding agencies, R&D Institutions, Industries and faculty members of REVA University to facilitate undertaking innovative projects. It encourages student research projects by forming different research groups under the guidance of senior faculty members. Some of the core areas of research wherein our young faculty members are working include Data Mining, Cloud Computing, Image Processing, Network Security, VLSI and Embedded Systems, Wireless Censor Networks, Computer Networks, IOT, MEMS, Nano- Electronics, Wireless Communications, Bio-fuels, Nano-technology for coatings, Composites, Vibration Energies, Electric Vehicles, Multilevel Inverter Application, Battery Management System, LED Lightings, Renewable Energy Sources and Active Filter, Innovative Concrete Reinforcement, Electro Chemical Synthesis, Energy Conversion Devices, Nano-structural Materials, Photo-electrochemical Hydrogen generation, Pesticide Residue Analysis, Nano materials, Photonics, Nano Tribology, Fuel Mechanics, Operation Research, Graph theory, Strategic Leadership and Innovative Entrepreneurship, Functional Development Management, Resource Management and Sustainable Development, Cyber Security, General Studies, Feminism, Computer Assisted Language Teaching, Culture Studies etc.

The REVA University has also given utmost importance to develop the much required skills through variety of training programs, industrial practice, case studies and such other activities that induce the said skills among all students. A full-fledged Career Development and Placement (CDC) department with world class infrastructure, headed by a dynamic experienced Professor & Dean, and supported by well experienced Trainers, Counselors and Placement Officers.

The University also has University-Industry Interaction and Skill Development Centre headed by a Senior Professor & Director facilitating skill related training to REVA students and other unemployed students. The University has been recognized as a Centre of Skill Development and Training by NSDC (National Skill Development Corporation) under Pradhan Mantri Kaushal Vikas Yojana. The Centre conducts several add-on courses in challenging areas of development. It is always active in facilitating student's variety of Skill Development Training programs.

The University has collaborations with Industries, universities abroad, research institutions, corporate training organizations, and Government agencies such as Florida International University, Okalahoma State University, Western Connecticut University, University of Alabama, Huntsville, Oracle India Ltd, Texas Instruments, Nokia University Relations, EMC², VMware, SAP, Apollo etc, to facilitate student exchange and teacher–scholar exchange programs and conduct training programs. These collaborations with foreign universities also facilitates students to study some of the programs partly in REVA University and partly in foreign university, viz, M.S in Computer Science one year in REVA University and the next year in the University of Alabama, Huntsville, USA.

The University has also given greater importance to quality in education, research, administration and all activities of the university. Therefore, it has established an independent Internal Quality division headed by a senior professor as Dean of Internal Quality. The division works on planning, designing and developing different quality tools, implementing them and monitoring the implementation of these quality tools. It concentrates on training entire faculty to adopt the new tools and implement their use. The division further works on introducing various examination and administrative reforms.

To motivate the youth and transform them to become innovative entrepreneurs, successful leaders of tomorrow and committed citizens of the country, REVA organizes interaction between students and successful industrialists, entrepreneurs, scientists and such others from time to time. As a part of this exercise great personalities such as Bharat Ratna Prof. C. N. R. Rao, a renowned Scientist, Dr. N R Narayana Murthy, Founder and Chairman and Mentor of Infosys, Dr. K Kasturirangan, Former Chairman ISRO, Member of Planning Commission, Government of India, Dr. Balaram, Former Director I.I.Sc., and noted Scientist, Dr. V S Ramamurthy, Former Secretary, DST, Government of India, Dr. V K Aatre, noted Scientist and former head of the DRDO and Scientific Advisor to the Ministry of Defence Dr. Sathish Reddy, Scientific Advisor, Ministry of Defence, New Delhi and many others have accepted our invitation and blessed our students and faculty members by their inspiring addresses and interaction.

As a part of our effort in motivating and inspiring youth of today, REVA University also has instituted awards and prizes to recognize the services of teachers, researchers, scientists, entrepreneurs, social workers and such others who have contributed richly for the development of the society and progress of the country. One of such award instituted by REVA University is **'Life Time Achievement Award'** to be awarded to successful personalities who have made mark in their field of work. This award is presented on occasion of the **'Founders' Day Celebration**" of REVA University on 6th January of every year in presence of dignitaries, faculty members and students gathering. The first "REVA Life Time Achievement Award" for the year 2015 has been awarded to Shri. Kiran Kumar, Chairman ISRO, followed by Shri. Shekhar Gupta, renowned Journalist for the year 2016, Dr K J Yesudas, renowned play back singer for the year 2017. REVA also introduced "**REVA Award of Excellence"** in the year 2017 and the first Awardee of this prestigious award is Shri Ramesh Aravind, Actor, Producer, Director, Screen Writer and Speaker.

REVA organizes various cultural programs to promote culture, tradition, ethical and moral values to our students. During such cultural events the students are given opportunities to unfold their hidden talents and motivate them to contribute innovative ideas for the progress of the society. One of such cultural events is REVOTSAVA conducted every year. The event not only gives opportunities to students of REVA but also students of other Universities and Colleges. During three days of this mega event students participate in debates, Quizzes, Group discussion, Seminars, exhibitions and variety of cultural events. Another important

event is Shubha Vidaaya, - Graduation Day for the final year students of all the programs, wherein, the outgoing students are felicitated and are addressed by eminent personalities to take their future career in a right spirit, to be the good citizens and dedicate themselves to serve the society and make a mark in their respective spheres of activities. During this occasion, the students who have achieved top ranks and won medals and prizes in academic, cultural and sports activities are also recognized by distributing awards and prizes. The founders have also instituted medals and prizes for sports achievers every year. The physical education department conducts regular yoga classes everyday to students, faculty members, administrative staff and their family members and organizes yoga camps for villagers around. Recognizing the fast growth of the university and its quality in imparting higher education, the BERG (Business Excellence and Research Group), Singapore has awarded BERG Education Award 2015 to REVA University under Private Universities category. The University has also been honored with many more such honors and recognitions.

ABOUT SCHOOL OF MECHANICAL ENGINEERING

Mechanical Engineering is one of the oldest and classical branches of engineering which drives the development and economy of the country. The school of Mechanical Engineering in REVA University has a rich blend of experienced, energetic and dedicated faculty with highest qualification in the specialization of thermal, design, manufacturing and management streams. The school has well-furnished class rooms and well equipped laboratories with modern software tools to meet academic and industry requirements. The research Centre with modern equipment and testing facility is also available to cater research activities in the field of materials and bio-fuels. Extracurricular and co-curricular activities are conducting to develop additional skills, knowledge and confidence through University Industry Interaction Cell and various student clubs and student chapters with the support of industries. Industry persons are invited to give technical talks on latest technologies and students are deputed for internship in industries and universities in India and Abroad. The school is having MOU with reputed industries and universities in India and abroad for internship, research and twinning program or higher studies which will give more exposure of our students to outside world. Many students have done internship in reputed institutions like IISc, ISRO, DRDO, HAL, Rail Wheel factory, Volvo and many more. Every semester school is organizing industry visits to reputed organizations to learn various aspects of industry. Student clubs and chapters are highly active in the school which are MARS, ISHRAE Student Chapter, Foundry Man Society, Fluid Power Society, SAE club and Aryan Racing Team through which cultural events, training programs, invited talks, industry visits and placement activities are conducting. School is encouraging the students to participate in national and international level competitions like Solar car design, Electric vehicle design, Formula car design, ATV design, Go-Cart design and quiz competition through this student can learn additional skills like design, team management, time management and financial aspects. Additional training programs are conducting in the field of automobile, robotics, and manufacturing to impart skills with industry relevant. The School is organizing workshops, seminars, conferences and competitions in national and international level for the students, faculty and research scholars to enhance their skills and research trends. The school offers B.Tech in Mechanical Engineering, M.Tech. in Machine design and PhD program. The curriculum of both UG and PG is designed to meet the needs of the society and industry for present and future.

It also meets the requirements of higher studies in India and abroad and also for the requirement of competitive exams. In overall, school will support and make our students more disciplined, good human being and more responsible persons of the society.

Vision

"Aspires to be recognized globally for outstanding value based education and research leading to well-qualified mechanical engineers, who are innovative, entrepreneurial, successful in their career and committed to the development of the country."

Mission

- 1. To impart quality education to the students and enhance their skills to make them globally competitive mechanical engineers.
- 2. To promote multidisciplinary study and cutting edge research and expand the frontiers of mechanical engineers profession.
- 3. To create state-of-art facilities with advanced technology for providing students and faculty with opportunities for innovation, application and dissemination of knowledge.
- 4. To prepare for critical uncertainties ahead for mechanical engineering and to face the challenges through clean, green and healthy solution.
- 5. To collaborate with industries, institutions and such other agencies nationally and internationally to undertake exchange programs, research, consultancy and to facilitate students and faculty with greater opportunities for individual and societal growth.

Sl No.	Particulars of Members
1	Dr. N. V. Ravikumar
	Associate Professor,
	Department of Metallurgy & Materials Engineering, IIT Madras
2	Mr. K. N. Narsimha Murthy
	Chairman, Fluid Air Systems, Bangalore.
	Hon. Treasurer, Karnataka Small Scale Industries Association (KSSIA)
3	Prof. M. V. Krishna Murthy
	Former Professor Dept. Mechanical Engineering IIT Chennai, Madras,
	Former Director, VIT, Vellore
4	Mr. Praveen Kumar Jinde
	Scientist, NAL, Bangalore
5	Dr. K Ramachandra
	Former Director, GTRE, Bangalore
	CEO, NP-MICAV's National Design Research Forum
	The Institute of Engineers, Bangalore.
6	Prof. E. Abhilash
	Dept. Mechanical Engineering, King Khalid University Abha,
	Kingdom of Saudi Arabia.

"When a young man leaves the institution after a course of training, he should be clean in speech and habit with a correct sense of patriotism, loyalty to the country, aptitude for initiative, love for self-help, appreciation of the value of time, respect for law and order, and a knowledge of the value of the right thinking and right living, sufficiently well-equipped to fall into a position in some business or other and be able to support himself."

- Sir. M. Visvesvaraya

M.Tech. in Machine Design

Program Overview

Mechanical Engineering discipline applies the principles of physics and materials science for design, analysis, prototyping, manufacturing, and maintenance of mechanical systems. Mechanical Engineers specialize in subject areas like Machine Design, Manufacturing and Energy Conversion (Thermal power) depending on individual's interest through postgraduate education and research routes.

The School of Mechanical Engineering at REVA UNIVERSITY offers M. Tech., in Machine Design–a postgraduate program to create motivated, innovative, creative and thinking graduates to fill the roles of Machine Designers who can conceptualize, design, analyze and develop machines to meet the modern day requirements.

The first intellectual and creative activity in development of a new equipment is product or industrial design and the subsequent activity is the Machine Design. Machine design is the process of engineering design. A machine is made up of mechanisms that work together to satisfy the requirements of what the machine needs to accomplish. Machine design takes into account kinematics and kinetics, which deal with motion and the forces on an object in motion. Machine design is applied through a specific process including determining what the machine needs to do, benchmarking and defining goals and requirements, brainstorming, evaluating and selecting from the different options, creating an in-depth design, creating and testing a prototype, and finally manufacturing the machine.

In summary, machine design is about recognizing the need, arriving at specifications, synthesis, analysis, prototyping and evaluation and producing drawings for manufacturing.

Mechanical engineers work in the domains of automobile engineering, aerospace engineering, machine tools, Internal combustion engines, cement industry, steel industries, power sector, hydraulics, manufacturing plants, drilling and mining industry, petroleum, general engineering, biotechnology and many more. Nowadays they are also increasingly needed in the environmental and bio-medical fields. There are exciting times ahead for mechanical engineers as transport technologies like hyper loop, electric vehicles, flying cars, drone technologies, intelligent system like robots and additive manufacturing including 3D printing are gaining importance. These mechanical engineering domains need machine designers to create machines that not only meet the functional, aesthetic, ergonomic requirements but must also be economical to operate and maintain, robust, sustainable and intelligent.

In this context, The School of Mechanical Engineering at REVA UNIVERSITY would like to add to the growing human resources needs of industry as machine designers through its M. Tech. program in Machine Design.

Program Educational Objectives (PEOs)

The aim of the program is to produce postgraduates with advanced knowledge and understanding of contemporary machine design; higher order critical, analytical, problem solving and transferable skills; ability to think rigorously and independently to meet higher level expectations of industry, academics, research establishments or take up entrepreneurial route.

The **Program Educational Objectives** are to prepare the students to:

- 1. Be machine designers to design mechanical equipment, machines and mechanical systems as per the desired customer specifications.
- 2. Pursue doctoral research degree to work in colleges, universities as professors or as scientists in research establishments.
- 3. Act as administrators in public, private and government organizations or business administrator or entrepreneur with further training.

Program Outcomes (POs)

After undergoing this program, a student will be able to:

PO1: Demonstrate in-depth knowledge of Machine Design, including wider and global perspective, with an ability to discriminate, evaluate, analyze and synthesize existing and new knowledge on design concepts, and integration of the same for enhancement of knowledge.

PO2: Analyze complex design problems critically, apply independent judgment for synthesizing information to make intellectual and/or creative advances for conducting research in a wider theoretical, practical and policy context.

PO3: Think laterally and originally, conceptualize and solve mechanical design problems, evaluate a wide range of potential solutions for those problems and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of expertise.

PO4: Extract information pertinent to unfamiliar problems through literature survey and experiments, apply appropriate **research methodologies, techniques and tools, design**, conduct experiments, analyze and interpret data, demonstrate higher order skill and view things in a broader perspective, contribute individually/in group(s) to the development of scientific/technological knowledge in the domains of mechanical design engineering.

PO5: Create, select, learn and **apply** appropriate techniques, resources, and **modern engineering and IT tools**, including prediction and modeling, to complex mechanical design engineering activities with an understanding of the limitations.

PO6: Possess knowledge and understanding of group dynamics, recognize opportunities and contribute positively to **collaborative-multidisciplinary scientific research**, demonstrate a capacity for self-management and teamwork, decision-making based on open-mindedness, objectivity and rational analysis in order to achieve common goals and further the learning of themselves as well as others.

PO7: Demonstrate knowledge and understanding of engineering and management principles and apply the same to one's own work, as a **member and leader in a team**, manage projects efficiently in mechanical design and multidisciplinary environments after consideration of economical and financial factors.

PO8: Communicate with the engineering community, and with society at large, regarding complex mechanical design engineering activities confidently and effectively, such as, being able to comprehend and write effective reports and design documentation by adhering to appropriate standards, make effective presentations, and give and receive clear instructions.

PO9: Recognize the need for, and have the preparation and ability to engage in **life-long learning** independently, with a high level of enthusiasm and commitment to improve knowledge and competence continuously.

PO10: Acquire professional and intellectual integrity, professional **code of conduct**, **ethics of research** and scholarship, consideration of the impact of research outcomes on professional practices and an understanding of responsibility to contribute to the community for sustainable development of society.

PO11: Observe and examine critically the outcomes of one's actions and make corrective measures subsequently, and **learn from mistakes** without depending on external feedback (**SELF learning**).

PROGRAM SPECIFIC OUTCOMES (PSOs)

After successful completion of the programme, the post graduates shall be able to

PSO 1: Apply Machine Design engineering knowledge, skills and competency in Design and analysis of systems related to Automotive, Mechanical, Aerospace Engineering and allied areas to obtain realistic outcomes.

PSO 2: Identify, formulate, analyze and solve problems in mechanical design engineering and allied domains.

PSO 3: Conduct investigations in the areas of numerical analysis, vibration analysis, material failure, mechanism synthesis to provide optimal and sustainable solutions.

M.Tech. (Machine Design) Program

Scheme of Instruction

(Effective from the Academic Year 2019-21)

SEMESTER-I

			Type s of	Cred	it Patt	ern		
SI No	Course Code	Title of the course	cours e (HC/ SC)	L	Т	Р	Credit Value	Total Hour s
FIF	RST SEMESTEI	R						
1	M18MD1010	Numerical Methods	НС	3	0	1	4	5
2	M18MD1020	Geometric Modeling and PrototypeHC301		1	4	5		
3	M18MD1030	Synthesis and Analysis of Mechanisms	НС	3	0	1	4	5
4	M18MD1040	Advanced Mechanics of Solids	НС	3	0	1	4	5
5	M18MD1050	Finite Element Procedure – I	FC	3	0	1	4	5
6	M18MD1061	Design and Analysis of Engineering components	SC	3	0	1	4	5
-	M18MD1062 M18MD1063	Design of Experiments Advanced Materials	-					
	M18MD1003	Theory of Plates and Shells						
7	M18MD1071 M18MD1072	Design for Manufacturing and Assembly	SC	3	1	0	4	5
	M18MD1073	Vehicle Dynamics						
			Total	21	1	6	28	35
	Total Credits for the First Semester							

• Note: Courses contain relevant lab component in each unit in order to give Practical Exposure to students.

SEMESTER-II

SI			Types of	Cree	dit Patt	ern			
N 0	Course Code	Title of the course	course (HC/ SC)	L	Т	Р	Credit Value	Total Hours	
1	M18MD2010	Experimental Stress Analysis	НС	3	0	1	4	5	
2	M18MD2020	Finite Element procedure – II	НС	3	0	1	4	5	
3	M18MD2030	Advanced Theory of Vibration	НС	3	0	1	4	5	
4	M18MD2040	Tribology and Bearing Design	НС	3	1	0	4	5	
5	M18MD2050	Mechanics of Composite Materials	НС	3	0	1	4	5	
	M18MD2061	Machine Tool Design							
6	M18MD2062	Mechatronics Product Design	SC	4	0	0	4	4	
	M18MD2063	Rotor Dynamics							
7	M18MD2071	Advanced Machine Design							
	M18MD2072	Robotics and its Application	SC	4	0	0	4	4	
	M18MD2073 Optimization in Engineering Design	-							
	Total 23 1 4							33	
		Total Credi	ts for the	Seco	nd Sem	lester	28	33	

SEMESTER-III

SI N	Course Code	Title of the course	Types of course		Credit Pattern		Credit	Total	
0			(HC/SC)	L	Т	Р	Value	Hours	
1	M18MD3010	Fatigue and Fracture Mechanics	НС	3	1	0	4	5	
2	M18MD3020	Open Elective (Modern Automotive System)	OE	3	1	0	4	5	
3.	M18MD3030	Internship with Report	RULO	0	0	6	6	12	
4	M18MD3040	Project Phase-I	HC	0	0	4	4	8	
5	M18MD3050	Yoga/ Sports/ Theatre/ Music / Dance	RULO	0	0	2	2	2	
	Total 6 2 12							32	
	Total Credits for the Third Semester								

SEMESTER-IV

1	M18MD4010	Project/Dissertation/Seminar	HC	0	0	16	16	-
2	M18MD4020	MOOC/ SWAYAM/ On line program	RULO	4	0	0	4	-
			Total	4	0	16	20	-
	Total Credits for the Fourth Semester						20	
Total Credits of all Four Semesters							96	

Note: 1) Soft Core (SC): Student shall opt for one SC course of his/her choice from the groups framed

- 2) Open Elective (OE): These are the courses that are offered for the students of other Schools. The students of the School of Mechanical Engineering have to choose ONE Open Elective offered by other schools.
- **Modern Automotive System** (M18MD3020) is the open elective course which is being offered by School of Mechanical Engineering to the students of other schools.

Guide lines for Internship/Project Work:

- **1. Internship:** should be carried out in a reputed /Tier-1/R & D organization, preferably, internship should be with stipend. The internship should be approved by the REVA University authorities before completion of 3rd semester and the students should obtain the permission for the same by producing the necessary details of company, selection process, and the offer letter issued by the company. At the end of the Internship, detailed report must be submitted.
- **2. Project work:** Phase-1 comprises of literature survey, review paper writing, and problem formulation, identification of tools and techniques, and methodology for the project. Phase 2, in

4th semester should have a visible outcome in the form of publication in a reputed International Conference/Journal or copyright or patent filing.

Semesters	No. of Credits
First Semester	28
Second Semester	28
Third Semester	20
Fourth Semester	20
Total Credits	96

Semester-wise Summary of Credit Distribution

Distribution of Credits Based on Type of Courses

Semester	НС	FC	SC	OE	RULO	TOTAL
Ι	16	04	08	-	-	28
II	20		08	-	-	28
III	08			04	08	20
IV	16			-	04	20
Total	60	04	16	04	12	96

HC=Hard Core; SC=Soft Core; OE=Open Elective; RULO=REVA Unique Learning Offerings

Distribution of Credits Based on L: T: P

Semester	L	Т	Р
Ι	21	1	6
II	23	1	4
III	6	2	12
IV	4	0	16
Total	54	4	38

M.Tech. (Machine Design) Program DETAILED SYLLABUS

FIRST SEMESTER

			<u> </u>		-			
Course Code	Course Title	Course Type	L	T	Р	C	Hr/wk	
M18MD1010	Numerical Methods	НС	3	0	1	4	5	
		Internal Assessm	nent		Semester End			
Prerequisite: E	ngg. Mathematics-I, II, III & IV				Exam			
	50 Marks					50 Marks		
Course	1. To enhance the knowledge			ls on	timiz			
Objectives	differential equations, hyperb			.s, op		Julio	i, puitui	
objectives	2. These concepts occur frequer		0	ce fini	te el	emer	nt method	
	and other design application of					011101	it mound	
Course	After the completion of the course		be al	ole to:				
Outcomes	1	del simple mathe				s of	physical	
		lication.					1 2	
	2. Determine and optimiz	e engineering	prob	lems	in	Scie	nce and	
	engineering.	c († c			C (1 1		
	3. Differentiate and integrate for engineering application		give	en set	of t	abula	ited data,	
	6 6 11	alyze Curve fi	ttino	met	thods	s fo	or given	
		lications.	ung	me	linou	, 10	n given	
Unit:1	Introduction to Numerical	erical Methods &Numerical				12 Hours		
Umt:1	Integrati	on				121	Tiouis	
Introduction to	o numerical methods applied to e	ngineering probl	ems	: Exar	nples	s, sol	ving sets	
of equations, M	atrix notation, Determinants and in	version, Iterative	metł	nods, l	Relaz	catio	n	
methods, system	n of non-linear equations, compute	r programs.						
Numerical int	tegration: Newton-Cotes integra	ation formulas,	Simj	oson's	rul	es,	Gaussian	
quadrature. Ada	ptive integration.							
Lab Componer	nt: Solving linear and non-linear	equations using	MA	ГLAB	con	imai	nds	
Unit:2	Optimiza	tion				11 H	Iours	
Optimization:	One dimensional unconstrained of	optimization, mul	ltidir	nensic	onal	unco	nstrained	
Optimization –	lirect methods and gradient search	n methods, constra	ainec	l optir	nizat	ion 1	Boundary	
value problems	and characteristic value problems	: Shooting metho	d – S	Solutio	on th	roug	h a set of	
equations – De	rivative boundary conditions - R	ayleigh – Ritz m	etho	d – C	hara	cteris	stic value	
problems.								
Unit:3	Numerical solutions of partial differential equations 11 Hours						Iours	
Numerical solu	itions of partial differential equa	tions: Laplace's e	equat	tions,	Repr	esen	tations as	
a difference eq	uation, Iterative methods for Lapl	ace's equations,]	Poiss	son eq	luatio	on, E	xamples,	
Derivative boundary conditions , Irregular and non-rectangular grids , Matrix patterns,								
Sparseness , ADI method , Parabolic partial differential equations: Explicit method, Crank-								
Nickelson meth	od, Derivative boundary condition	, Stability and con	verg	ence o	criter	ia.		
Lab Compone	ent: Solving partial and ordina	ry differential	equa	tions	usir	ng N	IATLAB	

commands(PD	commands(PDE23 & ODE45)					
Unit:4	Hyperbolic partial differential equations & Curve fitting	11 Hours				
Hyperbolic pa	Hyperbolic partial differential equations: Solving wave equation by finite differences stability					
of numerical	method, Method of characteristics-wave equation in two s	pace dimensions-				
computer progr	cams.					
Curve fitting a	and approximation of functions: Least square approximation f	fitting of nonlinear				
curves by least	t squares, regression analysis, multiple linear regression, nonl	linear regression -				
computer progr	rams					
Lab Compone	ent: Exercises on curve fitting using MATLAB commands					
Text Books:	1. Steven C. Chapra, Raymond P.Canale,(2000), "Numer	rical Methods for				
	Engineers", Tata Mc-Graw Hill.					
	2. Curtis F.Gerald, Partick.O.Wheatly, (1989), "Applied nu	merical analysis"				
	Addison-wesley.					
	3. Douglas J.Faires, Riched Burden (1998) "Numerical meth	<i>nods</i> ³⁷ Brooks/cole				
Defeneres	publishing company.					
References:	1. Ward Cheney & David Kincaid (1999)"Numerical					
	<i>computing</i> " Fourth Edition Brooks / Cole publishing Com					
	2. Riley K.F.M.P.Hobson & Bence S.J, (1999) "Mathema	tical methods for				
	physics and engineering" Cambridge university press.					

Mapping of Po's and Co's

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO	PO	PO
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	9	10	11
									(i)	(j)	(k)
CO ₁											
CO ₂	\checkmark										
CO ₃	\checkmark										
CO ₄	\checkmark										

Course Code	Course Title	Course Type	L	Т	Р	C	Hrs/wk			
M18MD1020	Geometric Modelling and Prototyping	НС	4	0	1	5	5			
—	e: Engg. Drawing, Computer Aided ne Drawing, CAD/CAM/CIM	Internal A	ssessi Marks			Semester End Exam 50 Marks				
Course Objectives	 To make to students to understand the differences & advantages of using latest development in Digital drafting over conventional methods. To make students to understand the concept and application of geometric modeling. To enable the students to understand GD&T and its application. To teach reverse engineering and Rapid prototyping techniques. 									
Course OutcomesBy the end of this course, the students will be able to1. Understand and learn advantages of digital drafting over conventional methods.2. Apply the knowledge of geometrical modeling to real problems.3. Draft a model with knowledge of GD& T and RP techniques4. Understand and learn advantage of using digital tools for design.										
Unit:1	Introduction to CAD, CAM	, CIM and	CAP	Р		12 H	lours			
Scaling, rotati regenerate, wir	AD /CAM, desirable features of CA on, translation, editing, dimensioning re frame modelling, surface modelling s. CIM as a concept and a technolog	ng, labelling and solid	ng, Z mode	Coom, elling ir	pan, 1 rela	red tion	raw and to latest			
Unit:2	Engineering Drawing Funda	mentals &	GD&	z T		11 H	lours			
of solids, dime	ineering drawing orthographic projection in the standards, fundamental dimental di	tions, pictor	rial re	present			U			
Unit:3	Geometric mod	elling			-	11 H	lours			
surface entities	Geometric modelling - Types and Mathematical Representations of Surfaces: Surface models, surface entities, surface representation, parametric representation of analytic surfaces and synthetic surfaces, simple problems.									
Unit:4	Introduction to Rapid prototype, Rapid Prototype Te		ngine	ering 8	Ż	11 H	lours			

Introduction:	Need for time compression in product development, Product development -								
conceptual des	ign – development – detail design – prototype – tooling. Classification of RP								
systems, Stere	o lithography systems - Principle - process parameters - process details -								
machine detail	machine details, Applications. Concepts of reverse Engineering, its application with case								
studies Concep	ot of 3D printer.								
Text Books	 Ibrahim Zeid., R.Sivasubramanian,.(2005), "CAD/CAM : THEORY & PRACTICE". Second Edition, special Indian edition., McGraw Hill Publication. Rafiq Noorani.,(2005)"Rapid Prototyping: principles and applications", kindle edition. Robert W.Messler Jr.,(2013) "Mechanisms, structures, systems & materials". McGraw Hill Publication. Chee Kai Chua,. Kah Fai Leong,. & Chu Sing,.Lim., "Rapid Prototyping: Principles and Applications". 3rd Edition. world Scientific publishing Co.Pte.Ltd. 								
References	 P. Radhakrishnan., S. Subramanyan., V. Raju (2008) "CAD/CAM/CIM", Third Edition, New Age International(P) limited, Publisher. D. D. Bedworth., M. R. Henderson., P. M. Wolfe.,(1991) " Computer Integrated Design and Manufacturing" McGraw-Hill. M.P.Groover., and E. W. Zimmer.,(2003) "CAD/CAM Computer Aided Design and Manufacturing", 1First Edition, Pearson Education. Chua.,(2010) "Rapid Prototyping Principles and Applications". 3rd edition, YesDee Publishing Private Limited. 								

Mapping of Po's and Co's

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO	Р
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	10	0
										(j)	11
											(k)
CO ₁	\checkmark										
CO ₂	\checkmark										
CO ₃											
CO ₄											

Course Code	Course Title	Course Type	L	Т	Р	C	Hr		
M18MD1030	Synthesis and Analysis of Mechanisms	HC	3	0	1	4	5		
Prerequisite: T	heory of Machines I and II	Asses	ernal smen Iarks	t	Semester End Exam 50 Marks				
Course	1. It aims at finding out degrees of freedom for an								
 Objectives 2. Help to provide the designer concept to control the position of any mechanism at a particular instant of time. 3. It helps in solving the mechanism both analytically and graphically 4. Teach the Freudenstein's equation and to gives an idea about the manipulator and its dynamics 									
 Course After successful completion of the course the student shall be able to Outcomes 1. Explain the concept of inversion, degrees of freedom, velocity and acceleration for any given mechanism. 2. Generate the motion for a particular expression and find out the different points traced by a mechanism. 3. Solve the mechanism problems both analytically and graphically by using different methods like number analysis, dimensional analysis etc. 4. Understand and classify dynamics behavior of manipulators. 									
Unit1:	Introduction and Mechanics of different M	Iechanisr	ns		11	Hou	rs		
bar chains - Ter - Kutzback crite single slider cra Kennedy's theo relative velocity	Links - Pairs - Chain - Mechanism - Machine struct minology and definition - Planer, Spherical and Space erion - Grubler's criterion for plane mechanism. Invest and double slider crank mechanisms - Simple rem - Velocity and Acceleration of Four bar and s Method <i>t: Analyzing the mechanism using Adams</i>	atial Mech version of problems	nanisn mech - Inst	ns - (anisi antai	Grasl ms - neou	hoff's Four s cen	s law bar, iter -		
Unit2:	Velocity, Acceleration and Introduction to mo	tion gene	ratio	n 1	12Ho	ours			
Position, Velocity and Acceleration analysis, Static force analysis, Inertia forces in machines, Synthesis of Mechanisms: Type, number and dimensional synthesis, Coupler curve Introduction, tasks of Kinematics Synthesis, Graphical synthesis: Motion generation-two and three prescribed motions, Path generation – three prescribed positions, prescribed timings, four positions without prescribed timings, Function Generator: Three prescribed points, Introduction to Analytical synthesis three prescribed positions for motion, path and function generation, circle, point and center-point circles,									

Lab Component: Analyzing the mechanism using Adams

Unit 3	Analytical and Graphical Method of motion generation	12 Hours
Freudenstein's	equations for three point function generation, order synthesis, C	coupler cognate
mechanisms	Graphical Methods: Precision positions Over lay Method. Analy	tical Methods:
Blotch's Synthe	esis - Freudestien's Method - Coupler curve Synthesis - Cognate	linkages - The

Roberts - Cheby	yshev theorem	
Lab component	t: Analyzing the mechanism using Adams	
Unit 4:	Manipulators and its dynamics10 Hours	
Manipulators :	Classification, actuation and transmission systems, coordinate systems, coordina	te
transformations	-DH notations, inverse and forward kinematics, Manipulator dynamics from	m
Lagrangian and	Newtonian point of view	
Lab component	t: Simulation of various manipulators using MATLAB	
Text Books	1. George N Sandor and Arthur G Erdman, (1988), "Mechanism Design", VOL	. —
	1, PHI.	
	2. George N Sandor and Arthur G Erdman, (1988), "Mechanism Design", VOL	_
	2, PHI.	
	3. Joseph E Shigley (2005), Theory of Machines & Mechanism Design, Thin	rd
	Edition, Oxford Publications.	
References	1. Klafter R.D., Cmielewski T.A. and Negin (1994), Robot Engineering A	١n
	Integrated Approach, New Delhi, M Prentice Hall.	
	2. Deb S.R (1994), Robotics Technology and Flexible Automation, Secon	nd
	Edition, Tata McGraw Hill Publishing Co., Ltd.	

Mapping of Po's and Co's

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	10	PO ₁₁
										(j)	(j)
CO ₁											
CO ₂											
CO ₃							\checkmark				
CO ₄											

Course Code	Course Title	Course Type	L	Τ	Р	С	Hr				
M18MD1040	Advanced Mechanics of Solids	HC	3	0	1	4	5				
Duonoguigitos En	and Mathematica Material Science &		Ir	ternal		Sei	nester				
-	agg. Mathematics, Material Science &		Ass	essme	nt	End	Exam				
Metallurgy, Mech	hanics of Materials.		50	Mark	S	50	Marks				
Course	1. To enable the students to un	derstand e	quilibr	ium e	quat	ion fo	or elastic				
Objectives	body and to obtain stress-strain										
	2. Provide systematic basic know		[wo D	imensi	ona	l Prob	lems and				
	Cubical Dilation, True Stress -			T			D1				
	3. Provide systematic basic knowledge Uniqueness Theorem and Plastic Deformation of Metals.										
		4. To enable the students to understand Yield Criteria and Stress Strain									
	4. To enable the students to the Relations.			nena	anu	Sues	s Suain				
Course	After completion of the course the stu	dent will b	e able	to							
Outcomes	1. Demonstrate the fundamentals				n an	d anal	vze the				
outcomes	Stress and Strain.	of equilion		quano		u unu	yze me				
	2. Formulate Cubical Dilation, True Stress and Strain, two dimensional										
	problems.										
	3. Formulate the Uniqueness Theorem and Plastic Deformation of										
	Metals.										
TT • 1	4. Determine the Stress Strain Re			Crite	-						
Unit:1	Analysis of Stress-Strain			• • 1		2 Hou					
•	ss: Stress, Stress at a Point, Equilibriu	1	ns, Pri	incipal	Str	esses,	Mohr's				
•	um Shear Stress, Boundary Conditions		1.	1 7 7	1	• 1					
•	in: Compatibility Equations, Principal					's law	,				
	tion of Elasticity Problems – Plane Stre					a					
-	Determine the stresses and strain of T	l'ensile test	speci	men oj	† Al,	Coppe	er and				
Brass material.					—						
Unit:2	Cubical Dilation, Two Dimens					2 Hou					
	n, True Stress and Strain: Strain tenso			ı, plan	e sti	ain, s	pherical				
	in, octahedral strain and representative	-									
	al Problems: Cartesian co-ordinates,	•				-					
•	nction for simple beam problems, Be	0				ever b	eam of				
rectangular cross	section under edge load, pin ended bea	um under un	niform	press	ure.						
Lab Component:	: Determine the Bending of a narrow	cantilever	beam	of rec	tang	gular	cross				
section under edge load											
Unit:3	Uniqueness Theorem & Plastic De	formation	of Me	etals.	12	2 Hou	rs				
Uniqueness The	orem: Principle of super position, recip	procal theor	rem, sa	aint ve	nan	princ	iple.				
Plastic Deform	ation of Metals: Crystalline struct	ure in m	etals,	mecha	anisi	n of	plastic				
deformation, factors affecting plastic deformation, strain hardening, recovery, recrystallization											
and grain growth	, flow figures or luder's cubes.										
Lab Component:	: Determine the Crystalline structure	in metals									
Unit:4	Stress Strain Relations and	Viala Cari	•		0	Hou					

Stress Strain Relations: Introduction, types of materials, empirical equations, theories of plastic flow, experimental verification of St.Venant's theory of plastic flow, the concept of plastic potential, the maximum work hypothesis, mechanical work for deforming a plastic substance **Yield Criteria:** Introduction, yield or plasticity conditions, Von Mises and Tresca criteria, Geometrical representation, yield surface, yield locus (two dimensional stress space), experimental evidence for yield criteria, energy required to change the shape with basic principle problems

Lab Component: Determine the concept of plastic potential

zus component	Determine the concept of pressie potential
Text Books	1. L. S. Srinath (2008), Mechanics of solids, ,Tata McGraw Hill, 3rd
	Edition
	2. S. P. Timoshenko and J. N Gordier(1972) Theory of Elasticity, ,
	Mc.Graw Hill International, 3rd edition
	3. Chakraborty (2000), Theory of Plasticity, 3rd Edition Elsevier.
	4. 'Engineering Plasticity',(2000) W. Johnson and P. B. Mellor D Van
	N.O Strand Co. Ltd .
References	1. Dr. Sadhu Singh (1988), Theory of Elasticity, 5th Edition, Khanna
	Publications.
	2. Seetharamu & Govindaraju (2005), Applied Elasticity, Interline
	Publishing, New-Delhi.
	3. C.T. WANG , (1953) , Applied Elasticity, McGraw Hill Book Co.

Mapping of Po's and Co's

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	PO ₁₁
											(k)
CO ₁											
CO ₂											
CO ₃											
CO ₄											

Course Code	Course Title	Course Type	L	Т	Р	C	Hr			
M18MD1050	Finite Element Procedures-1	FC	3	0	1	4	5			
Prerequisite: Me	chanics of Materials/Engg Mather	matics	Iı	ntern	al	Seme	ster End			
			Ass	sessn	nent	E	xam			
			50) Mai	:ks	50	Marks			
Course Objectives	 principles underlying the to solid mechanics and h 2. To provide systematic a Finite element method a 3. To teach the students the selection of suitable eler 4. To make the students descomplex elements. 	5. To make the student solve for field variable for thermal composite								
Course	By the end of the course, the s	tudents will	be a	ble to)					
Outcomes	 Describe the different elements, various approa Analyze the Interpol equations and Solution Determine the stiffnes Trusses and derive st Elements Derive Hermite Shape problems. 	aches in Fini lation poly to 1-D Bars s matrix a hape functi	te Ele nomia using nd u ons	ment als FE p nkno for	t Metl by oackag wn I Highe	hod, Euler-L ge DOFs er Ord	Lagrange of er			
Unit:1	Introduction					1	11 Hours			
Advantages and Packages. Discretization: E elements – Elem numbering. Different approa	Various Stress analysis methods, c limitations of FEM, Steps involve lement shapes and behavior – Che ent shape and distortion – Location sches in Finite Element Method – It: Meshing of given machine me	ed in FEM, pice of elem on of nodes - Principle of	Appli ent ty - Node minim	catio pes – e and num]	ns of - size l Elen PE	FEM a and num	nd FEM			
Unit:2	Interpolation Models and Solu					1	11Hours			
	olynomials- Linear, quadratic and				nnlev					
elements.2D PAS matrix and Jacob	SCAL's triangle. CST elements-Sl bian for triangular element.(no der Bars: Solutions of bars and ster	hape functio	ns in i	NCS	, Stra	in displ	acement			

Solution of 1-D Bars: Solutions of bars and stepped bars for displacements, reactions and

stresses by using penalty approach and elimination approach. Lab Component: Solving various bar problems using a FE Software Unit:3 **Trusses and Higher Order Elements** 11 Hours TrussesStiffness matrix of Truss element. Numerical problems Higher Order Elements: Lagrange's interpolation, Higher order one dimensional elements-Quadratic and cubic element and their shape functions. Shape function of 2-D quadrilateral elements. Iso parametric, Sub parametric and Super parametric elements. Numerical integration: 1 and 2 gauss point for 1D case. Lab Component: Solving the given truss using a FE Software Unit:4 **One Dimensional Problems – Beams and Frames** 12 Hours Finite Element Modeling of a basic beam element in local coordinate system using energy approach; Formulation of element matrices; Assembly of the Global Stiffness Matrix, Mass matrix and Load vector; Treatment of boundary Conditions; Euler Bernoulli (thin) beam element and Timoshenko (thick) beam element; Beam element arbitrarily oriented in plane (2D) as Plane frames and in space as space frame analysis (3D). Lab Component: Solving the given beam using a FE Software 1.Bhavikatti S.S.(2006), 'Finite Element Analysis', 4th edition, New Delhi, Text Books New Age International publishers. 2. Chandrapatla T.R. and A.D Belegunde A.D, (2008), 'Finite Elements in Engineering', 3rd edition, New Delhi, PHI. 1. Daryl. L. Logon, (2001), Finite Element Methods, 3rd edition. New References

2.	Cook R.D, D.S Maltus D.S, Plesha M.E., Witt R.J. (2009), Concepts
	and applications of Finite Element Analysis, 4th Edition, London, Wiley.

Mapping of Po's and Co's

york, Thomson Learning.

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	PO
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	11
											(k)
CO ₁											
CO ₂											
CO ₃											
CO ₄											

Course Code	Course Title	Course Type	L	Т	Р	C	Hr		
M18MD1061	Design and Analysis of	Турс	3	1	0	4	5		
11101112 1001	Engineering	SC		-			C C		
	Components	50							
Prerequisite: Machir	ne Design Advanced Mecha	nics of		Intern	 a1	Seme	ster End		
-	-			Assessm		Exam			
Solids/Engg Mathem	natics.		F						
	50 Marks 50 Marks								
Course Objectives	1. To enable the students to understand the mathematical and physical principles of solid mechanics and thier problems.								
	2. To provide sys	-				-			
	of Design meth					wieuge	JI Dasies		
	3. To teach the str			allenges	s of Des	sign of e	lements		
	and selection o			-		-			
	solved.				1		C		
	4. To make the st	udents to de	rive in	nferenc	e from	the desig	gn of		
	simple and cor	nplex eleme	nts.						
Course Outcomes	By the end of the course,	, the studen	ts wil	l be ab	le to				
	1. Describe the di	ifferent type	s of P	ractical	design	method	s and		
	various approa				U				
	2. Identify the even	idences of v	arious	s failure	es throu	gh micr	oscopic		
	methods. 3. Analyze failures caused due to hot corrosion and stress								
	corrosion.	tha thaorati	ool 11	ndorato	ndina	of foilu	* 0		
	4. Demonstrate the theoretical understanding of failure mechanisms.								
Unit:1	Introduction						1 Hours		
Perform design calc	ulations, generate 2D Draw	vings based of	on des	sign cal	culation	ns and c	reate 3D		
Models, Perform Fir	nite Element Analysis on 3I	D models an	d eva	luate th	e desig	n for au	tomotive		
components like Con	nnecting rod of an IC Engin	e, Cranksha	ft of a	an IC Ei	ngine et	tc.,			
	· · · · · · · · · · · · · · · · · · ·				C		1		
	pecifications for any comm	ercial Autor	mobil	e and p	erform	the ana	lysis for		
realistic operating co					T				
Unit:2	Failure analysis through	-					11Hours		
	al failure modes and their id					•	1		
	ission electron microscopy,	Scanning el	ectroi	n micro	scopy.	Systema	tic		
approach to failure a							1 11.0.000		
Unit:3	Mechanical aspects	D: 1 1		T			1 Hours		
	loading, Combined stress,	-							
sensitivity. Shock an	aint, Plane stress, Plane and impact loading	suam, sues	55 COI	ncentral	1011 120	lois an	u noten		
Unit:4	Fatigue Failure Analysis					1	2 Hours		
	Loading under high cycle f		itiona	Test m	l hethoda				
	rrosion and stress corrosior	-							
	ervice failures during high t								
material indefiaits, st	er nee minister during might	rendered		, i uiit					

Text Books	1. C. R. Brooks and A. Choudhury (2002), Failure Analysis of
	Engineering Materials, McGraw-Hill
	2. Richard G. Budynas, J. Keith Nisbett, Shigley, (2010) 'Mechanical
	Engineering Design', 9 th Edition, The McGraw-Hill Companies.
	3. Robert C. Juvinall Kurt M. Marshek, (1995), 'Fundamentals of
	Machine Component Design', John Wiley & Sons, Inc.
References	1. Joseph E. Shigley, Charles R. Mischke, "Standard handbook of
	machine design", 2 nd Edition, The McGraw-Hill Companies.
	2. Robert C. Juvinall, Kurt M. Marshek "Machine Design
	Component Design" 5 Th Edition, International Student Version,
	John Wiley & Sons, Inc.

Mapping of Po's and Co's

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	PO
											11
											(k)
CO ₁											
CO ₂											
CO ₃											
CO ₄											

Course Code	Course Title	Course Type	L	T	P	C	Hr		
M18MD1062	Design of Experiments	SC	3	1	0	4	5		
D	Netherseties Design	- f	In	ternal	Se	mester			
-	ngineering Mathematics, Design	01	Asse	essmen	t	Ene	d Exam		
machine element	ts		50	Marks		50	Marks		
Course Objectives Course Outcomes	 To make students to understand the Concepts of random variable, probability, density function cumulative distribution function. Sample and population To enable students to identify Measures of variability, Ranking method, Column effect method & Plotting method, Analysis of variance (ANOVA) in Factorial Experiments: YATE's algorithm for ANOVA, To understand & identify the Types of Orthogonal Arrays, selection of standard orthogonal arrays, Linear graph sand Interaction assignment, Dummy level Technique To educate the students , Parameter and tolerance design concepts, Taguchi's inner and outer arrays, parameter design strategy After successful completion of the course the student shall be able to 								
oucomes	 Identify the various controllable & uncontrollable factors on the design of experiments. Experiment under various situation to solve Classical Experiments: Factorial Experiments: Terminology: factors, levels, interactions, treatment combination, randomization. Apply the Experiment Design Using Taguchi's Orthogonal Arrays. Describe the Signal To Noise Ratio, Parameter And Tolerance 								
Unit1:	Design. Introdu	ction				11 H	Iours		
Introduction: S	L Strategy of Experimentation, Ty		ications	of Ext	perin	nental	design		
	, Guidelines for Designing Exper		louis		Jerm	lentui	uesigii,		
	al Concepts: Concepts of rand		ole, prob	ability.	der	nsitv	function		
	ibution function. Sample and pop		-	•		•			
	ode, Measures of Variability,						-		
	Normal, Log Normal & Weibull	-							
	sample size. Illustration through l		• 1				2		
Unit2:	Experimental Design, Anal	ysis And I	nterpret	ation		175	lours		
UIIIt 2 .	Metho	ods				141.			
Experimental I	Design: Classical Experiments: F	Factorial E	xperimer	nts: Ter	minc	ology:	factors,		
levels, interaction	ons, treatment combination, rand	lomization	, Two-le	vel exp	perin	nental	designs		
for two factors a	and three factors. Three-level exp	perimental	designs	for two	o fac	tors a	nd three		
factors, Factor of	effects, Factor interactions, Frac	ctional fac	torial de	sign, S	Satur	ated 1	Designs,		
Central composi	te designs. Illustration through N	umerical e	xamples						
Analysis And I	nterpretation Methods: Measu	res of vari	ability, F	Ranking	g me	thod,	Column		
effect method &	Plotting method, Analysis of va	ariance (A	NOVA) i	in Fact	orial	Expe	riments:		
YATE's algorithm	m for ANOVA, Regression analy	sis, Mathe	matical n	nodels	from	expe	rimental		

data. Illustration through Numerical examples.

	Uni	it 3			Q	ualit	ty of	Exp	erimei	ntal Design		12 Ho	urs
_		_	 -	_	_	-	-				 		

Quality By Experimental Design: Quality, Western and Taguchi's quality philosophy, elements of cost, Noise factors causes of variation. Quadratic loss function & variations of quadratic loss function. **Robust Design**: Steps in Robust Design: Parameter design and Tolerance Design. Reliability Improvement through experiments, Illustration through Numerical examples.

Experiment Design Using Taguchi's Orthogonal Arrays:Types of Orthogonal Arrays, selection of standard orthogonal arrays, Linear graphsand Interaction assignment, Dummy level Technique, Compound factor method, Modification of linear graphs.Illustration through Numerical examples.

Unit 4:	Signal To Noise Ratio, Parameter And Tolerance	10 Hours
	Design	

Signal To Noise Ratio: Evaluation of sensitivity to noise. Signal to Noise ratios for static problems: Smaller-the-better type, Nominal-the –better-type, Larger-the-better type. Signal to Noise ratios for Dynamic problems. Illustration through Numerical examples.

Parameter And Tolerance Design: Parameter and tolerance design concepts, Taguchi's inner and outer arrays, parameter design strategy, tolerance design strategy. Illustration through Numerical examples.

0	1											
Text Books	 Douglas C. Montgomery, (2007), 'Design and Analysis of Experiments' 5th Edition Wiley India Pvt. Ltd. 											
	adhav S. Phadke, (1989), 'Quality Engineering using Robust Design'											
	rentice Hall.											
References	1. Thomas B. Barker, (1985), 'Quality by Experimental Design',											
	MarcelDekker Inc ASQC Quality Press.											
	2. C.F. Jeff Wu Michael Hamada, (2002), 'Experiments planning, analysis,											
	and parameter Design optimization', John Wiley Editions.											
	3. W.L. Condra, (1985), 'Reliability Improvement by Experiments'											
	MarcelDekker, Inc ASQC Quality Press.											
	4. Phillip J. Ross,(1996), 'Taguchi Techniques for Quality Engineering',											
	2 nd Edition, . McGraw Hill International Editions.											

Program outcomes	PO ₁	PO ₂	PO ₃	PO	PO ₅	PO ₆	PO	PO ₈	PO ₉	PO ₁₀	PO ₁₁
Course outcomes	(a)	(b)	(c)	4	(e)	(f)	7	(h)	(i)	(j)	(k)
				(d)			(g)				
CO ₁											
CO ₂							\checkmark				
CO ₃											
CO ₄											

Course Code	Course Title	Course Type	L	Т	Р	C	Hr				
M18MD1063	Advanced Materials	SC	3	1	0	4	5				
Prerequisite: Mate				Inter	nal	Sen	nester End				
Man	ufacturing Technology.			Assess	ment		Exam				
				50 Ma	arks	50	0 Marks				
Course Objectives	 The objectives of this subject are to provide the students with: 1. An understanding of the principles, capabilities, limitations an applications of commonly used advanced materials. 2. To emphasize the significance of materials selection in the Composi materials. 3. To comprehend the importance of shape memory and super alloys. 4. To get familiarize with the new concepts of Nano Science ar Technology. 										
Course Outcomes	Upon completion of the su 1. Select appropriate advance 2. Characterize the different of 3. Select the shape memory a 4. Choose appropriate Nano r	ed materia composite nd super a	l for mate lloys	the spo erials a s for er	ecific app nd Smart ngineerin	t Mate g prac	rials. tice.				
Unit:1	Metals and A	lloys				11 Ho	ours				
composites. Ferrou Non Ferrous allo	bys: Classification and character as Alloys: properties, structure. ys: Alloys of copper, Aluminum treatment, structure, properties a	, nickel, m	nagn	esium,		-					
Unit:2	Composite	S				11Ho	urs				
Composites, Polyr Smart Materials Materials, Smart	nition, classification and charac ner matrix composites and Cerar Review of Composite Mate Materials (Physical Properti ostrictive Materials, and Self-He	mic matrix erials, Def es) Piezo	Con initi elec	mposite on and tric M	es and its l classifi	Application	ications of Smart				
Unit:3	Super alloys & shape m	emory all	oys			11 Ho	ours				
properties and its applications. High	shape memory alloys: Ni-ba applications, Cu-based and N h temperature alloys: Classif treatment and machining of Ti al Nanoscience and Nan	ased, Fe-t liTi shape ication of lloys.	asec me Ti	l, Co- mory	alloys p	roperti	es and its erties and				
	Nanoscience and Nanotechnol		0.	roncen	ts of N						
Nanotechnology, ophysical vapor dep	Carbon nanotubes – Material position – Potential uses of nan position – Potential uses of nan puipment, mobile electronic de	processing omaterials	by in e	chemie electror	cal vapo nics, rob	r depo otics,	osition and computers,				

Text Books	 William D. Callister Jr (2008), Materials Science & Engineering An introduction, 4th edition, London, John Wiley & Sons. R. A. Flinn& P. K. Trojan (2007), Engg. Materials & their applications-, 4th edition, Jaico Publishing House. M. V. Gandhi and B. So Thompson (1992) Smart Materials and Structures, London, Chapman & Hall. Thiruvadigal, J.DPonnusamy, S, Sudha.D. and Krishnamohan, .(2013), Materials Sciences- Chennai ,M Vibrant Publication. Rajendran.V (2011), Materials Science, New Delhi, Tata McGraw- Hill.
References	 James.F. Shackleford (2010), Introduction to Material Science and Engineering, 7thedition. New York, MacMillan publisher. Chawla K.K, (1998), Composite Materials - Science and Engineering, 2nd edition, Newyork, Springer – Verlag. Mick Wilson, KamaliKannangara (2005), Nanotechnology – Basic Science and Emerging Technologies, 1st edition, Overseas Press India Private Limited.

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	0	PO_1
										(j)	1
											(k)
CO ₁											
CO ₂											
CO ₃											
CO ₄											

Course Code	Course Title	Course Type	L	Т	Р	C	Hr
M18MD1071	Theory of Plates and Shells	SC	3	1	0	4	5
Prerequisite: Ma	achine Design, FEM, MOM		I	nterna	1	Ser	nester End
			Ass	sessm	ent		Exam
			50) Marl	KS	5	0 Marks
Course	1. To enable the students to unde	rstand Dif	ferent	Bound	lary C	Conditi	ons for
Objectives	plates.						
	2. Provide systematic basic know	ledge for	Circula	ar plat	es sut	ojected	to Axi-
	symmetrical loads						
	3. To enable the students to under	rstand Fini	te diff	erence	e meth	nod, Fi	nite element
	methodology for plates,						
	4. Formulate to understand the b	-	-		Memb	orane a	nd bending
	theory for singly curved and o	doubly cur	ved sh	ells			
Course	After completion of the course the						
Outcomes	1. Demonstrate the fundamentals	-	e bendi	ng of	Plates	s and a	nalyze the
	Plates subjected to lateral load						
	2. Formulate Circular plates subj		-				
	3. Apply the Rayleigh-Ritz meth		0	-			
Unit:1	4. Derive the equations of Shells		ificatio	on of s	shells.		12 Hours
	Simple bending o		:	4			
	of Plates-Assumptions in thin plate	-				-	
-	tions for plates, Plates subjected to l Levy's method for general plates, J						
loading.	Levy s memor for general places,	Szampie p		15 W IU	I UIIIC	Jent ty	pes or
Unit:2	Circular plates subjected to Ax	zi-symmet	ricall	nade			12 Hours
	subjected to Axi-symmetrical load				inifor	mly di	
-	load, Annular circular plate with en			ouu, e		ing an	Jilloutou
Unit:3	Rayleigh-Ritz m						11 Hours
	nethod : Application to different		. Fini	te dif	ferenc	ce me	
	plogy for plates, Orthotropic Plates	-					
	ates, Material Orthotropic, Structura	U		-	-		-
Unit:4	Shells		1 /				10 Hours
	ation of shells - Membrane and benc	ling theory	v for si	ngly o	curved	l and d	
	arious approximations - Analysis of			8-) -			
Text Books	1. S.P.Timoshenko and S.Woinov	1		eorv o	f plate	es and	shells
	Krieger, McGraw-Hill.	,	- ,,				
	2. A.C.Ugural,(1999), 'Stresses						
References	1. Analysis of plates, T.K.Varada 1999.	n and K.B	haskar	, Narc	osa Pu	blishin	g House,
	2. Stresses in Shells, Flugge. Blai		0			-	-
	construction of concrete shell i	roofs by G	.S.Ran	naswa	.my, C	CBS Pu	blishers&
	Distributors, 1986.	nolucia of	Diatas	Dear	tion T	1.011 N	any Ioray
	3. Rudolph Szilard, Theory and A	Marysis of	riates	, rren	luce F	1a11, IN	ew jercy
	1986.						

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	PO ₁
											1
											(k)
CO ₁											
CO ₂											
CO ₃											
CO ₄											

Course Code	Course Title	Course Type	L	Т	Р	C	Hr					
M18MD1072	Design for Manufacturing and Assembly	SC	3	1	0	4	5					
Prerequisite De	sign: SOM, Manufacturing Technology			Internal	Semester							
Machine.	sign: SOW, Wandacturing Technology	,	A	ssessme								
Widenine.				50 Mark	s 50 Marks							
Course	1. To enable the students to	understand	Gen	neral de	esign	prin	ciples for					
Objectives manufacturability, strength and mechanical factors, mechanisms selection.												
	2. Provide systematic basic know	wledge for	r Wo	orking	princi	ple,	Material,					
	 Manufacture, Design Possible solutions, Materials choice, 3. To enable the students to understand Design features to facilitate machining 											
	drills - milling cutters, keyways, D	Ooweling pr	ocedu	ires								
	4. Formulate the Identification of	uneconomi	cal d	esign, D	esign	for	economy,					
	Design for clamp ability, Design f	or accessibi	lity, r	nodifyin	g the	desig	n.					
Course	After completion of the course the stu	dent will be	able	to								
Outcomes	1. Demonstrate the fundamentals of						capability,					
	Feature tolerances, Geometric to Tolerance stacks.	olerances,	Assen	nbly lin	nits, l	Datur	n features,					
	2. Formulate Factors Influencing Form	n Design: V	Vorki	ng princi	iple. N	Mater	ial.					
	Manufacture, Design Possible solut	e	, or ite		.p.e, 1	'iutoi	,					
	3. Determine the Component Design i		9 &C	asting C	onsid	eratio	ons					
	4. Design for Manufacture and Case S		0	•								
	design, Design for economy.	144105, 1401	itiitea	uion or u	necor		Jui					
Unit:1	Introduction						12 Hours					
	Jeneral design principles for manufactor	cturability.	stren	gth and	mech	anica						
mechanisms sel	ection, evaluation method, Process mbly limits, Datum features ,Tolerance	capability stacks.	, Fea	iture tol	eranc	es, (Geometric					
Unit:2	Factors Influencing For	rm Design					11Hours					
Factors Influen solutions, Materi forgings and cast	Icing Form Design: Working princip ials choice, Influence of materials on f tings.	ole, Materia rom design	al, M from	anufactu design	re, D of we	esign lded	Possible members,					
Unit:3	Component Design in Machi	ning &Cas	sting				11 Hours					
	Consideration											
milling cutters, k simplification by Component D considerations, N	sign Machining Consideration : Desi keyways, Doweling procedures, counter separation, simplification by amalgam esign Casting Considerations: Rec dinimizing core requirements, machine	r sunk scre ation, Desig design of	ws, R gn for castii	Reductior machinangs base	n of n ability ed or	nachi 7. 1 pa	ned area - rting line					
cores. Unit:4	Design for Manufacture and	l Coco Stu	diag				11 Hours					
Design for Man economy, Desig	nufacture and Case Studies: Identif n for clamp ability, Design for acce technology, Computer Applications for	ication of ssibility, M	unecc				Design for					
Text Books:	1. Design for Manufacture, Harry		nan P	ublicatio	n, 19	83.						
References:	1. Engineering Design - A system sons Ltd.	matic appro	ach, I	Robert N	/latou	sek,]	Blackie &					
	2. Hand Book of Product Dea McGraw Hill Co.	sign for N	/lanuf	acturing,	, Jan	nes (G. Bralla,					

3. Knowledge based design for manufacture, Swift K.G, Kegan Page Ltd.,
1987.

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	0	PO ₁₁
										(j)	(k)
CO ₁											
CO ₂											
CO ₃											
CO ₄											

Course Code	Course Title	Course Type	L	T	Р	С	Hr
M18MD1073	Vehicle Dynamics	SC	3	1	0	4	5
Proroquisito: En	gg. Mathematics, Mechanical vibration, Kin	amatics	Iı	ntern	al	Se	mester
Mechanics of Ma		ematics,	Ass	sessn	nent	Enc	l Exam
wiechanies of wie	uertais.		50	Maı	:ks	50	Marks
Course	1. To know about the application	of basic	mec	hanio	es pr	rincip	oles for
Objectives	dynamic analysis of vehicles.						
G	2. To study the behavior of vehicle.	11 1 1	1 /				
Course	After completion of the course the student 1. Describe how passenger comfor			مام	na v	with	vehicle
Outcomes	stability.	t is aciii	eveu	alu	ng v	viui	venicie
	2. Predict the various forces and	d loads	and	per	form	ance	under
	acceleration, ride and braking.			r			
	3. Derivate the dynamic equations gov	verning a 1	oad	vehic	ele.		
	4. Solve the fundamental problems in	vehicle dy	nam	ics.			
Unit 1	Concept of Vibration					Iours	
	lelling and Simulation, Global and Vehicle			•			
Undamped and I	Damped Vibration, Response Analysis of S	ingle DOI	F, T	wo I	DOF,	Mul	ti DOF,
Magnification fa	actor, Transmissibility, Vibration absorber,	Vibratio	n m	easu	ring	instr	uments,
Torsional vibration	on, Critical speed.						
Unit 2	Vehicle Dynamics and Fundamentals of	f Load Tr	ansfe	er	11 H	lours	
Introduction to	Vehicle Dynamics, Vehicle Performance-A	Acceleration	on 8	b Br	aking	g; Ri	de and
Handling, Estima	ation of Road Loads, Tractive Resistance and	d Tractive	Fore	ce, N	ewto	n's L	aw and
developing equat	tions for forces acting on vehicle axles, lo	ngitudinal	l and	late	ral l	oad t	ransfer,
estimating load o	n individual wheel, gradeability, Static Stabi	ility Facto	r.				
Unit 3	Vehicle Ride				11 H	lours	
Sources of Vibra	tion. Ride Rate and Vehicle natural frequence	cy, dampi	ng co	oeffic	cient	and v	variable
damping ratio, pa	assive, Semi-active and active dampers susp	ension sys	tems	, Qu	arter	car, I	Half car
and full car mod	lels response analysis, Vehicle pitch and ro	oll analysi	s, In	fluen	ce o	f sus	pension
stiffness, suspens	ion damping, and tire stiffness, Air suspensi	on system	and	their	prop	oertie	s.
Unit 4	Lateral dynamics				11 H	lours	
Steady state hand	lling characteristics, Steady state response t	o steering	inpu	it, St	abili	ty of	vehicle
•	oad, parked on inclined road, accelerating ca	U	-			•	
-	Road, Optimal Drive and Brake Force Dis						
	cles on a Crest and Dip-Vehicles on a Cre						
suspension on co	-					1, -	
r on co	0						
Text Books	1. Rao, S.S. and Yap, F.F., (2011), M	echanical	vibr	ation	s (Vo	ol. 4)	. Upper
	Saddle River: Prentice Hall.	- manieur	, 101		~ (, (· · · rroi
	2. Wong, J.Y., (2008), Theory of ground	nd vehicle	s. Jo	hn W	Viley	& So	ons.
	3. Rajamani, R., (2011), Vehicle dyna	amics and	con	trol.	Sprin	nger	Science
	& Business Media.	1 0 1					
	4. Gillespie, T.D., (1992), Fundament	als of vehi	icle d	lynar	mics.	Warı	endale,

	PA: Society of Automotive Engineers, 519.
References	 Dean Karnopp, "Vehicle Stability", 1st edition, Marcel Dekker, 2004 Nakhaie Jazar. G., "Vehicle Dynamics: Theory and Application", 1st edition, Springer, 2008 Michael Blundell & Damian Harty, "The Multibody Systems Approach to Vehicle Dynamics", Elsevier Limited, 2004 Hans B Pacejka, "Tire and Vehicle Dynamics", 2nd edition, SAE International, 2005 John C. Dixon," Tires, Suspension, and Handling", 2nd edition, Society of Automotive Engineers Inc, 1996 Jan Zuijdijk, 'Vehicle dynamics and damping", Author House, 2009

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	0	PO
										(j)	11
											(j)
CO ₁											
CO ₂											
CO ₃											
CO ₄											

SECOND SEMESTER

Course Code	Course Title	C	Hr										
M18MD2010	Experimental Stress Analysis												
Prerequisite: Engg.	Mathematics, SOM, TOE, MMM.		In	ternal		Semester End							
	Assessment Exam												
			50	Marks		50) Marks						
Course Objectives	 To understand the relation plane strain conditions To establish the fundame logging and newly experim To be able to use the expo and strains, mechanism of problems. To be able to understand P model deformation After Completion of the course stut Describe the Sensitivity & Describe the Recording Ins Explain the Bi- refringent O Describe the Photo Elastici 	ental concept nental Brittle erimental te of formation lane and cir ident shall b the construct struments & Coatings & 1	ots of s coating chnique n of M cularly e able to ction of Brittle of Moire M	static 1 gs tech s on t loire f polariz o: strain g coating Iethod	reconique he (rring zed gaug gs. s.	rding les. Coatir ges in light, ges.	and data ng stresses practical locking in						
Unit:1	Strain Measurement	Methods				12 Ho	ours						

Introduction: Theory of Elasticity, Plane stress and plane strain conditions, Compatibility conditions. Problems using plane stress and plane strain conditions, Three-dimensional stress strain relations.

Strain Measurement Methods: Various types of strain gauges, Electrical Resistance strain gauges, semiconductor strain gauges, strain gauge circuits.

Lab Component: To determine the young's, modulus the given material with the help of strain rossets & load cell.

Unit:2	Recording Instruments & Brittle coatings	12 Hours
Recording Instrum	ents: Introduction, static recording and data logging, dyr	namic recording at very

Recording Instruments: Introduction, static recording and data logging, dynamic recording at very low frequencies, dynamic recording at intermediate frequencies, dynamic recording at high frequencies, dynamic recording at very high frequencies, telemetry systems.

Brittle coatings: Introduction, coating stresses, failure theories, brittle coating crack patterns, and crack detection, ceramic based brittle coatings, and resin based brittle coatings, test procedures for brittle coatings analysis, calibration procedures, and analysis of brittle coating data.

Unit:3	Bi- refringent Coatings & Moire Methods	11 Hours

Bi-refringent Coatings: Introduction, Coating stresses and strains, coating sensitivity, coating materials, application of coatings, effects of coating thickness, Fringe-order determinations in coatings, stress separation methods.

Moire Methods: Introduction, mechanism of formation of Moire fringes, the geometrical approach to Moire-Fringe analysis, the displacement field approach to Moire-Fringe analysis, out of plane displacement measurements, out of plane slope measurements, sharpening and multiplication of Moire-Fringes, experimental procedure and techniques.

Unit:4	Photo Elasticity&Three-dimensional Photo	10 Hours
	Elasticity	

Photo Elasticity: Photo elasticity – Polariscope – Plane and circularly polarized light, Bright and dark field setups, Photo elastic materials – Isochromatic fringes – Isoclinics

Three-dimensional Photo Elasticity : Introduction, locking in model deformation, materials for three-dimensional photo elasticity, machining cementing and slicing three-dimensional models, slicing the model and interpretation of the resulting fringe patterns, effective stresses, the shear difference method in three dimensions, applications of the Frozen-stress method, the scattered light method.

Lab Component: To determine the fringe constants for photo elastic material by using polariscope.

Text Books	1. Dally and Riley, "Experimental Stress Analysis", McGraw Hill.
	2. Sadhu Singh, "Experimental Stress Analysis". Khanna publisher.
	3. Srinath L.S Experimental stress Analysis, Tata McGraw Hill.
References	1. M.M.Frocht "Photoelasticity Vol I and Vol II, John Wiley &\ sons.
	2. Perry and Lissner,"Strain Gauge Primer",
	3. Kuske, Albrecht & Robertson "Photo Elastic Stress Analysis", John Wiley
	& Sons.
	4. Dave and Adams, "Motion Measurement and Stress Analysis", v

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	PO
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	11
											(k)
CO ₁											
CO ₂											
CO ₃											
CO ₄											

	Course Title	Cours	L	Т	Р	С	Hr
		e Type					
M18MD2020	Finite Element Procedures-II	НС	3	0	1	4	5
Prerequisite: Finite	Element Procedures-1			Internal		Se	mester End
			A	ssessme	nt		Exam
Course Objectives	1. To enable the students			50 Mark			50 Marks
Course Outcomes	 principles underlying to dynamic and heat tran 2. To provide systematic Finite element method 3. To teach the students to selection of suitable element 4. To make the student service wall problems. After Completion of the course st 1. Compute Eigen Vector 2. Knowledgeable about solution of solid mech problems 3. Developing skills require 4. Apply FEM method to be a statistical service of the s	he Finite sfer proble and cor as applie he charac ements for olve for fin udent sha and Eige the FEM anics, stru	Eleme ems. nprehe d to ax teristic or the p eld va Il be a en Valu as a m nctural e a co	ent Meth ensive k xis symn cs of var problems riable fo ble to: ues of 11 umerical mechan	od (F) nowle netric ious e being r thern D and meth ics an 1 FEA	EM) a edge of probl lemen g solv nal co 2 D p od fo od the softw	as applied to of basics of lems nts and yed. omposite problems r the rmal ware
	composite walls.						
Unit:1	Formulation of dynamics analy					1 Ho	
	ormulation for point/lumped m					-	
	on of one dimensional dynamic an		r and	beam ele	ement	. Fin	
Element Formulation	-	•					
	Swo dimensional dynamic analy	•			ane a		
Formulation of T	-	sis: triar	ıgular	membra		nd a	xisymmetric
Formulation of T	wo dimensional dynamic analy	sis: triar	ıgular	membra		nd a	xisymmetric
Formulation of T element, quadrilata beams.	wo dimensional dynamic analy	v sis: triar	ngular and e	membra igen vec	tors a	nd a	xisymmetric able to bars,
Formulation of T element, quadrilata beams. Lab Component:	Ewo dimensional dynamic analy teral membrane. Evaluation of eige	vsis: triar en values Eigen V	ngular and ei alues	membra igen vec of giver	tors a	nd a	xisymmetric able to bars, using a FE
Formulation of T element, quadrilata beams. Lab Component: Software Unit:2	Ewo dimensional dynamic analy teral membrane. Evaluation of eige Finding out of Eigen Vector and Vector Variable problems - Plan and Axi-symmetric Analysis	vsis: triar en values Eigen V ne stress,	and ei and ei alues Plane	membra igen vec of giver Strain	tors a men 1	nd a pplic nber 1Hou	xisymmetric able to bars, using a FE
Formulation of T element, quadrilata beams. Lab Component: Software Unit:2	Ewo dimensional dynamic analy teral membrane. Evaluation of eige Finding out of Eigen Vector and Vector Variable problems - Plar	vsis: triar en values Eigen V ne stress,	and ei and ei alues Plane	membra igen vec of giver Strain	tors a men 1	nd a pplic nber 1Hou	xisymmetric able to bars, using a FE
Formulation of T element, quadrilata beams. Lab Component: Software Unit:2 Equilibrium equation	Ewo dimensional dynamic analy teral membrane. Evaluation of eige Finding out of Eigen Vector and Vector Variable problems - Plan and Axi-symmetric Analysis	en values Eigen V te stress, and form	ngular and e falues Plane mulatin	membra igen vec of giver Strain g the ele	tors a men	nd a pplic nber 1Hou matr	xisymmetric able to bars, using a FE urs ices - Plane
Formulation of T element, quadrilata beams. Lab Component: Software Unit:2 Equilibrium equation stress, plane strain	Evolution of Eigen Vector and Vector Variable problems - Plar and Axi-symmetric Analysis on formulation – Energy principle	Eigen V Eigen V and form	ngular and e falues Plane ulatin mater	membra igen vec of giver Strain g the electrials; Isc	tors a men 1 ement -para	nd a pplic nber 1Hou matr metri	xisymmetric able to bars, using a FE urs ices - Plane c Elements;
Formulation of T element, quadrilata beams. Lab Component: Software Unit:2 Equilibrium equations stress, plane strain Natural coordinate	Evolution of Eigen Vector and Vector Variable problems - Plar and Axi-symmetric Analysis on formulation – Energy principle and axi-symmetric elements; Or	Eigen V Eigen V and form thotropic for Axisy	and e and e alues Plane ulatin mater vmmet	membra igen vec of giver Strain g the ele- cials; Isc cric Prob	tors a men 1 ement o-para olems;	nd a pplic nber 1Hou matr metri Hex	xisymmetric able to bars, using a FE urs ices - Plane c Elements; ahedral and
Formulation of T element, quadrilata beams. Lab Component: Software Unit:2 Equilibrium equations stress, plane strain Natural coordinate	Wo dimensional dynamic analy teral membrane. Evaluation of eige Finding out of Eigen Vector and Vector Variable problems - Plan and Axi-symmetric Analysis on formulation – Energy principle and axi-symmetric elements; Or system; Four-node Quadrilateral lements; Linear, Quadratic and cu	Eigen V Eigen V and form thotropic for Axisy	and e and e alues Plane ulatin mater vmmet	membra igen vec of giver Strain g the ele- cials; Isc cric Prob	tors a men 1 ement o-para olems;	nd a pplic nber 1Hou matr metri Hex	xisymmetric able to bars, using a FE urs ices - Plane c Elements; ahedral and

Unit:3	Finite Element Formulations for Structural Mechanics	11 Hours
	Problems:	
Basics of plates a	nd shell theories: Classical thin plate Theory, Shear deformatio	n Theory and Thick
Plate theory. Fin	ite Element Formulations for triangular and quadrilateral Pla	ate elements. Finite
element formulati	on of flat, curved, cylindrical and conical Shell elements	
Lab Component	: Solving the given plate using a FE Software	
Unit:4	Heat transfer problems	12 Hours
Steady state heat	transfer, 1D heat conduction governing equations, Galerkin's	s approach for heat
conduction and so	olution for composite walls.	
Solving the field p	problems such as heat transfer in automotive cooling fin, engine	cover.
Lab Component	: Solving the given heat transfer problem using a FE Softwa	re
Text Books	1. Seshu. P, (2013), Finite Element Analysis Prentice Ha	ll of India.
	2. S.S. Bhavikatti (2006) Finite Element Analysis New	w Age International
	publishers,	
	3. T.R.Chandrapatla, A.D Belegunde, Finite Elements in	n Engineering 3rd
	Ed PHI.	. and
References	1. Daryl. L. Logon, Finite Element Methods Thomson L 2001.	earning 3 rd edition,
	 J.N.Reddy, Finite Element Method, McGraw -Hill International Contemport 	ernational Edition
	3. R.D. Cook D.S Maltus, M.E Plesha, R.J.Witt, Concer	

of Finite Element Analysis Wiley 4th Ed, 2009.

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	PO
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	0	11
										(j)	(k)
CO ₁											
CO ₂											
CO ₃											
CO ₄											

Course Code	Course Title	Course	L	Т	Р	С	Hr
		Туре					
M18MD2030	Advanced Theory of Vibration	НС	3	0	1	4	5
Prerequisite: Engg N	Iathematics, Mechanical Vibrations			Intern	al	S	emester
			Α	ssessn	nent	Er	nd Exam
			4	50 Mai	rks	50) Marks
Course Objectives							
	1. To enable the students to u	nderstand 1	respon	se to p	eriodic	and r	ion-
	periodic excitations.						
	2. To teach students about tra	nsient Vib	ration	by Lap	place tra	ansfor	mation
	formulation.	с ч		•		1 1	
	3. To enable students to solve under 2DoFs	e free vibra	tion of	spring	g - coup	bled s	ystems
	4. To apply modal analysis to	forced vib	ration	s usina	matrix	inve	rsion for
	MDOF systems.		iunoin	5 0.51112	muin		1011101
	5. To understand the importation	nce of cond	lition r	nonito	oring tec	chniqu	ies.
	6. To apply SPM and AE tech	nniques in a	analyzi	ing ma	achine f	ailure	es.
Course Outcomes	After completion of the course, the	e student w	ill be a	able to			
	1. Apply Duhamel's Integral	-	-	-			
	2. Analyze transient vibration		-				
	and analyze MDOF system	-			-		s.
	3. Apply SPM and AE metho		•				
TT 1. 4	4. Analyze the fan bearings a						
Unit:1	Review of Fundamentals of vibr	ation and 2	2 DOF		121	Hours	
	systems						
	vibration: Review of Single degree						
-	- Duhamel's Integral – Impulse n elastically coupled viscous dampe	-	luncuo	on - S	ingle d	legree	Ireedom
	lom systems : Free vibration of spri		ed syste	ems-S	imple n	roble	ms
-	Carrying out harmonic and non-harr	• •	•				
FE package.				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		e sjou	
Unit:2	Multi-degree of freedom system	and Conti	niioiis		11 1	Hours	
01111.2	systems		nuous			10015	
Multi-degree of fr	eedom system: Normal mode of	vibration	- Flex	ihility	Matrix	and	Stiffness
6	es and Eigen vectors - orthogonal						
Forced Vibration by	0	1 1			,		5
Vibration of contin	nuous systems: Vibration of string	s-wave equ	uations	s - vib	ration	of roc	ls - Euler
Equation for Beams	- Effect of Rotary inertia and shear	deformatio	n.				
Lab Component: C	arrying out modal and harmonic an	alysis of co	ntinuo	us sys	stems		
Unit:3	Condition monitoring methods a	and Vibrat	ion an	alysis	11 I	Hours	
Condition monitor	ing methods and Vibration analy	sis: Variou	ıs Con	dition	Monit	oring	Methods,
	tion Monitoring, Setting up a CM A	•				-	
	es, Vibration severity criteria, Vil						
analysis, Shock Puls	e Methods for testing Antifriction b	earings, A	coustic	emis	sion tec	chniqu	ie (AET)-

Instrumentation, Transducers, Preamplifier and filter, Main amplifier and Signal processing/ Display unit.

Lab Component: Obtaining and analyzing machinery vibration signatures using accelerometer and FFT analyzer.

Unit:4	Condition Monitoring Case Studies & Applications:	11 Hours
	ings- History of failures, Analysis of the failures, Solution	
		U 1 I
e e	pressor-History of trouble, Analysis of trouble, Solution. Mo	e
rotors- Turbo comp	ressor misalignment. Detection of faulty electrical compo	nents. Turbine shell
distortion. Symptom	is and Detections.	
Lab Component: C	collecting and analyzing machinery vibration signatures of det	fective parts.
Text Books	1. S. S. Rao, 'Mechanical Vibrations', Pearson Education In	c, 4th edition, 2003.
	2. V. P. Singh, 'Mechanical Vibrations', Dhanpat Rai & Co 2006.	ompany, 3rd edition,
	3. Update CEP ISTE New Delhi, 'Condition Monitoring and c maintenance'.	ondition based
	4. R. A. Caollacatt, Chapman, 'Mechanical Fault Diagnosis an Monitoring', Chapman and hall 1977.	d Condition
References	1. G. K.Grover, 'Mechanical Vibrations', Nem Chand an	d Bros, 6th edition,
	1996.	
	2. W. T. Thomson, M. D. Dahleh and C. Padmanabhan, "	•
	with Applications', Pearson Education Inc, 5th edition, 2008	8.
	3. S. Graham Kelly, 'Mechanical Vibrations', Schaum's	outline Series, Tata
	McGraw Hill, Special Indian Edition, 2007.	

Program outcomes	PO ₁	PO ₂	PO ₃	PO_4	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	PO ₁₁
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)
CO ₁											
CO ₂											
CO ₃											
CO ₄	\checkmark										

Course Code	Course Title	Course Type	L	T	P	C	Hr	
M18MD2040	Tribology and Bearing Design	HC	3	1	0	4	5	
Prerequisite: Engg.	Mathematics, MSM, MOM.		In	ternal		Sei	mester End	
			Ass	essme	nt		Exam	
			50	Marks	5	5	0 Marks	
Course Objectives	1. Recognize the properties	of lubrication	on, Reg	imes o	f Lu	bricat	tion	
	2. Identify the Hydrodynamic							
	3. Identify types of Slide Bea	0		0		~	~ .	
Comme Orate and a	4. Knowledge about Hydrost				us &	Gas	Bearings	
Course Outcomes	Upon Completion of the course stu				1	T		
	1. Identify the fundamentals			ssure	and	Temp	berature on	
	Viscosity, types of Viscom 2. Detect the pressure distril			namic	hear	nos :	analytically	
	and experimentally.	oution of n	yaroayr	lunne	ocui	ings (unuryticurry	
	3. Investigate the life-cycle	of a jour	mal ne	aring	and	Ideal	lized Slide	
	Bearing	-		-				
	4. Design the Hydrostatic Be		L, Porou	15 & G	as B	earing		
Unit:1	Introduction to Tr	0.					12 Hours	
	erties of lubrication, Regimes o							
	es. Newton's Law of Viscous For			ssure	and	Temp	berature on	
	viscometers. Friction, Wear, Wear Cl							
Lab Component: V	iscosity measuring using Red-wo	od, Saybol	lt visco	meters	, Pi	n on	disk wear	
testing.								
Unit:2	Hydrodynamic Lu						12 Hours	
	brication: Flow through Stationary			-			-	
	s. Concept of Lightly Loaded Bearing	•	-					
	arings: Pressure Development Mec		-	g and	Dive	rging	g Films and	
	ow. Reynolds's 2-D Equation with a	-						
Lab Component: De	etermination of pressure distribution			earing	test	rig.		
Unit:3	Slide Bearing & Journ	nal Bearing	gs				12 Hours	
Idealized Slide Bea	ring: Introduction, Idealized Slide	Bearing wi	ith Fixe	d Sho	e and	l Pivo	oted Shoes.	
Expression for Load	Carrying Capacity. Location of Ce	ntre of Pres	sure, N	umeric	al Pı	oblei	ns.	
Journal Bearings:	Introduction to Idealized Full Jo	urnal Bear	ings. L	oad C	arry	ing C	Capacity of	
Idealized Full Journ	hal Bearings, Sommerfeld Number	r and its S	ignifica	nce. (Comp	parisc	on between	
Lightly Loaded and	Heavily Loaded Bearings, Numeric	al Problem	s.					
Unit:4	Hydrostatic Bearings,Porous &	Gas Bearin	ngs				09 Hours	
Hydrostatic Bearin	gs: Types of Hydrostatic Lubricat	ion System	s Expre	ession	for 1	Disch	arge, Load	
Carrying Capacity, I	Flow Rate, Condition For Minimum	Power Los	ss. Torq	ue Cal	culat	ions.	Numerical	
Problems.								
Porous & Gas Bear	rings: Introduction, Working Princip	ple, advanta	iges and	l disad	vant	ages.		
Magnetic Bearings: Introduction, Active Magnetic Bearings, Working Principle, advantages and								
disadvantages.								
Text Books	1. L. S. Srinath, 'Advanced Med	chanics of s	olids', T	Fata M	c. G	aw F	Iill,2003	
	2. S. P. Timoshenko and J. N G	ordier, 'Tl	heory of	f Elast	icity	', Mc	.Graw Hill	

	International, 3rd edition, 1972
References	 Dr. Sadhu Singh, 'Theory of Elasticity', Khanna Publications, 1988 Martin H Sadd , 'Elasticity, Theory, Applications & Numericals', Elsevier. 2005
	 Seetharamu & Govindaraju , 'Applied Elasticity', Interline Publishing C.T. WANG Sc. D., 'Applied Elasticity', McGraw Hill Book Co.1953

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	0	PO_1
										(j)	1
											(k)
CO ₁											
CO ₂											
CO ₃											
CO ₄											

Course Code	Course Title	Course Type	L	Т	Р	C	Hr			
M18MD2050	Mechanics of Composite Materials	НС	3	0	1	4	5			
Prerequisite: SOM	, Composites materials, Advance mate	rials	Int	ernal		S	emester			
1	,			essme			d Exam			
			50	Mark	s	50) Marks			
Course	1. To teach the students to introd	luction of c	composi	te ma	teria	ls				
Objectives	2. To perform micromechanical						fa			
5	lamina.									
	3. To introduce to various biaxia	al strength t	heories	and r	nacr	o me	chanical			
analysis of a laminate.4. To provide a detailed knowledge of Strength Theories& analyze the										
	4. To provide a detailed knowled macro mechanical analysis of		ngun In	eories	sœ a	naryz	e the			
	5. To provide thorough knowled		ficient o	of the	rmal	expa	insion			
	and other thermal properties of					•				
Course	After completion of the course the stu	udent will b	be able t	0						
Outcomes	1. Describe the materials used for									
	2. Analyze the micro/macro mec									
	3. Describe the various biaxial s		ories an	d ana	lyze	macr	0			
	mechanical analysis of a lamin		oncion	and o	thar	horn	vo1			
	4. Determine the coefficient of the properties of laminates	nermai exp	ansion	and o	llei	mern	lai			
Unit:1	Introduction to Composit	e Material	S		11 H	Iours				
Composite Mater	rials Definition-Matrix materials-poly			mics			rcements:			
-	s, inorganic fibers, metal filaments-	-								
	Jute - Advantages and drawbacks of									
-	rties and applications of composites, P	_								
	thened composite, Fiber-reinforced co				-					
	d composites, Manufacturing fiber and	-								
Unit:2	Micro & macro Mechanical Ana			1	12H	ours				
Micro Mechanica	Analysis of a Lamina: Introduction	•			r ela	stic r	noduli by			
Rule of mixture.	2	,					5			
Macro Mechanics	s of a Lamina: Hooke's law for diffe	erent types	of mate	rials,	Nur	nber	of elastic			
		• 1		-						
						-				
	0	•	in theor	v. Nu			roblems.			
-	-			-		-				
	•			J I -			, , ,			
Unit:4					11 H	Iours				
UIIII.4										
	onstant Co-efficient of Thermal Expa	nsion (C.T	.E.) - N	/lodif	icati	on of	'Hooke's			
Assumption of Co	onstant Co-efficient of Thermal Expansion of Laminate Constitutive Equations.									
Assumption of Co Law. Modification	of Laminate Constitutive Equations.	Orthotrop	ic Lam	ina C	C.T.E	's. C	.T.E's for			
Assumption of Co Law. Modification special Laminate		Orthotrop	ic Lam	ina C	C.T.E	's. C	.T.E's for			
Macro Mechanica Constants, Two – c Unit:3 Biaxial Strength 7 Macro Mechanica and D matrices, Sp	s of a Lamina: Hooke's law for diffe dimensional relationship of compliance Strength Theories& a Theories: Maximum stress theory, Max al Analysis of Laminate: Introduction pecial cases of laminates, Numerical pr Thermal Analys	e and stiffno inalysis ximum stra n, code, Ki oblems. is	in theor	rix Nu ry, Nu hypo	11 H 11 H 11 H 11 H 11 H	ical p Iours ical p s, CI Iours	roblems roblems. . T, A, B,			

	1998.
	2. Mechanics of composite materials, Autar K. Kaw CRC Press New York
References	1. Fiber Reinforced Composites, P. K. Mallick, Marcel Dekker, Inc
	2. Mechanics of Composite Materials, Robert M. Jones, McGraw Hill
	Kogakusha Ltd.1998
	 Composite materials hand book, Meing Schwaitz," McGraw Hill book company.1984
	 Principles of composite Material mechanics, Ronald F. Gibron. McGraw Hill international, 1994.
	5. Mechanics of Composite Materials and Structures, Madhujit
	Mukhopadhyay, UniversitiesPress 2009

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	10	PO ₁₁
										(j)	(k)
CO ₁											
CO ₂											
CO ₃											
CO ₄											

Course Code	Course Title	Course Type	L	T	P	C	Hr				
M18MD2061	Machine Tool Design	SC	4	0	0	4	4				
Prerequisite: M	etrology & Measurements, Strength of	Materials,	Inte	ernal		Sen	nester End				
Machine Design	, Theory of Machines		Asses	ssme	nt		Exam				
			50 N	Aarks	3	5	0 Marks				
Course1. To impart the fundamental notations of the machine tools including the different types, construction, applications and their technological capabilities.2. To provide exposure to the systematic methods for solving the problems of designing machine tools and their components by exploring the various design aspects of machine tools elements like transmissions, structures, materials, 											
Course After completion of the course the student will be able to Outcomes 1. Analyze constructions and kinematic schemata of different types of machine tools. 2. Construct ray diagrams and speed spectrum diagrams for speed and feed box. 3. Develop the conceptual design, manufacturing framework and systematic analysis of design problems on the machine tools. 4. Apply the design procedures on different types of machine tool and/or machine tool components.											
Unit:1	Machine Tool D	rive					12 Hours				
transmission, M machine tools. Regulation of S	Drive: Working and auxiliary motion echanical transmission, General Requining peed and Feed Rates: Aim of speed box, Design of feed box, Special cases ates	irements of feed regula	machine	e too pped	ol de regu	sign, ilatior	Layout of of speed,				
Unit:2	Design of Machine Too	Structure					11 Hours				
Design criteria o	ine Tool Structure: Fundamentals of m f machine tool structure, Static and dyna ig models, Techniques in design of mach	amic stiffne	ss, Desig			-					
Unit:3	Design of Guide-ways and	power Scre	ews				11 Hours				
Design of Guide-ways and power Screws: Function and type of guide-ways, Design of slide-ways, protecting devices for slide-ways, Design of power screws. Design of Spindles and Spindle Supports: Materials for spindles, Design of spindles, Antifriction bearings, Sliding bearings.											
Unit:4	Cooling & Exhaust	System					11 Hours				
Dynamics of Ma	achines Tools: General procedure of ass	sessing dyna	amic stab	oility	of E	ES, C	utting				
processing, close	ed loop system, Dynamic characteristics	of cutting p	process, S	Stabil	lity a	nalysi	s.				
Text Books	 Machine Tool Design by N.K Machine Tool design Handbox 				11.						

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	PO ₁
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	0	1
										(j)	(k)
CO ₁											
CO ₂											
CO ₃											
CO ₄											

Course Code	Course Title	Course Type	L	T	Р	С	Hr			
M18MD2062	Mechatronics Product Design	SC	4	0	0	4	4			
Prerequisite: Autor	nation, CAD/CAM, Engg. Mathem	natics, Basic	Inte	rnal		Seme	ster End			
Electronic	s, Mechatronics and Microprocesso	or	Asses	sme	ent	E	xam			
			50 N	Iark	S	50	Marks			
Course Objectives	 To educate the student regarding electrical and computer system Robots etc. To provide students with an un Process, actuators, Sensors, tr Microsystems and also the Adding 	ns in the desi nderstanding ransducers, Si	gn of Cl of the M gnal Cor	NC 1 Iech nditi	mach atroi ionin	ine too nic Desi g, MEM	ls, ign AS and			
Course Outcomes	 Course Outcomes After completion of the course the student will be able to 1. Appreciate multi-disciplinary nature of modern engineering systems and specifically mechanical engineering students to collaborate with Electrical, Electronics, Instrumentation and Computer Engineering disciplines. 2. Analyze constructions and models of Engineering Systems, rotational, translation, elected mechanical, Hydraulic mechanical system. System Transfer functions. 3. Develop the conceptual design of Mechatronic Product using available software CAD packages MATLAB and SIMULINK 4. Apply the design procedures on different types of machine tool and/or 									
Unit:1	machine tool components usin Introduction to Me			<u>-p</u>			11 Hours			
logic, number system Microprocessors an	chatronics: Systems and compone n logic gates, Sequence logic flip fl nd their applications: Microcom signal conditioning processes, varie	lop system, J	K flip flo ater stru	op, I actur	D-fliµ re/mi	o flop. icro co	ontrollers,			
Unit:2	Sensors	;					12 Hours			
Fluid pressure tempo and hydraulic system	d transducers. Displacement, posit erature, liquid level and light sense ms, Mechanical actuation system. in Mechatronic system.	ors. Selection	of sense	ors.	Actu	ators, P	neumatic			
Unit:3	Principles of Electronic sys	tem commur	nication				11 Hours			
and hardware princi models, mechanical	ronic system communication, Interpreter ples and tools to build mechatroni and other system Building blocks. Engineering Systems, rotational, System Transfer functions.	c systems. Ba	asic syst	em	mode	els matl	hematical			
Unit:4	First-second order sy	stem in serie	s				11 Hours			
line encoders and r controllers with app	system in series: Design and select revolvers, stepper and servomotor plication to CNC system, robots, co t using available software CAD page	rs Ball screw onsumer elec	vs, soler tronics j	noid prod	s, lir lucts	ne actua etc, De	ators and			

Text Books	1. W.Bolton, Mechatronics, Addison Worley Longman Pvt. Ltd., India Brander, Delhi.
References	1. Mikel P Grooer, Automation Production System and CIMS, Prentice Hall of India Pvt. Ltd, New Delhi.

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO_6	PO ₇	PO ₈	PO ₉	PO ₁	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	0	PO ₁₁
										(j)	(k)
CO ₁											
CO ₂											
CO ₃											
CO ₄											

Course Code	Course Title	Course Type	L	Т	Р	С	Hr			
M18MD2063	Rotor Dynamics	SC	4	0	0	4	4			
Prerequisite: En	gg. Mathematics, Turbo Machines, Tribo		Int	ernal		Se	mester			
FEM, Mechanica			Asse	ssme	nt	Enc	l Exam			
			50 N	Mark	s	50	Marks			
Course	1. To enable the students to understand	nd Basic th	eory of	fluid	film	lubr	rication,			
Objectives	Derivation of generalized Reynolds	s equations,	Bounda	ary co	ondit	ions,				
	2. 2. Provide systematic basic know	ledge for	Rayleig	h's n	netho	od, S	todola's			
	method. Rotor Bearing System: I	nstability c	of rotors	due	to 1	the e	ffect of			
	hydrodynamic oil layer in the beari	ngs,								
	3. To enable the students to un	nderstand	General	tur	boro	tor	system,			
	development of element transfer m	atrices, the	matrix o	liffer	entia	l equ	ation			
	4. Formulate the General turboroto	or system,	general	ized	forc	ces a	ind co-			
	ordinates system assembly element	matrices.								
Course	After completion of the course the stud	lent will be	able to							
Outcomes	1. Demonstrate the fundamentals of	Fluid Film	Lubrica	tion	& Fle	exible	Shafts.			
	2. Formulate the Critical Speed: Dun	kerley's me	thod.							
		5 5 5								
	Formulation.	L 114-2 L -2 TC			F	1.4				
Unit:1	4. Derive the Turbo rotor System Stability by Finite Element Formulation.Fluid Film Lubrication & Flexible Shafts12 Hours									
	prication: Basic theory of fluid film			vatio						
	ons, Boundary conditions, Fluid film stiff					-				
• •	oonse for hydrodynamic journal bearing,					into, c	Juointy			
•	xible Shafts: Introduction, equation of				-	t wit	h rigid			
•	elastic friction forces, Rotary friction, f						-			
	quency, Different shaft stiffness Constan		-			-				
-	ion applied forces, instability of rotors in			.,		- m p-	00101115			
Unit:2	Critical Speed					11Ho	ours			
	Dunkerley's method, Rayleigh's met	hod. Stode	ola's me	ethod						
-	ty of rotors due to the effect of hydrody	,					U			
•	e model with one concentrated mass at the	•	iuj 01 111	the	ocurr		support			
	Turbo rotor System Stability by		latrix							
Unit:3	Formulation				-	11 Ho	ours			
Turbo rotor Sys	stem Stability by Transfer Matrix Fo	ormulation	: Gener	ral tu	irbor	otor	system.			
v							•			
development of element transfer matrices, the matrix differential equation, effect of shear and rotary inertia, the elastic rotors supported in bearings, numerical solutions.										
Turbo rotor System Stability by Finite Element										
Unit:4	Formulation 11 Hours									
Turbo rotor System Stability by Finite Element Formulation: General turborotor system,										
generalized forces and co-ordinates system assembly element matrices, Consistent mass matrix										
formulation, Lumped mass model, linearized model for journal bearings, System dynamic										
equations Fix stability analysis non dimensional stability analysis, unbalance response and										

Transient analysis.					
Blade Vibration	Centrifugal effect, Transfer matrix and Finite element, approaches.				
Text Books:	1. Principles of Lubrication, Cameron, Longman Publishing Group, 1986				
	2. Non conservative problems of the Theory of elastic stability Bolotin,				
	Macmillan, 1963				
References:	1. Matrix Methods in Elasto Mechanics, Peztel, Lockie, McGraw-Hill,				
	1963.				
	2. Vibration Problems in Engineering, Timosenko, Oxford City Press, 2011				
	3. The finite element method in engineering science, Zienkiewicz, McGraw-				
	Hill, 1971				

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	0	Р
										(j)	O ₁
											1
											(k)
CO ₁											
CO ₂											
CO ₃											
CO ₄											

M18MD2071 Advanced Machine Design SC 4 0 0 4 4 Prerequisite: TOE, TOP and DME-1 and 2 Internal Semester End Assessment Exam Course 0 1 Knowledge of different modes of failures & fatigue behavior of materials 50 Objectives 1 Knowledge of different modes of failures & fatigue behavior of materials 2. Objectives 1 Introduction to fracture mechanics and stress intensity factor. 4. Understand different damage tolerant theories used to estimate life and Types of sturace failures, contact stresses. Course At the end of the course, the student will be able to 1. Classify and explain the art of design methodology by analysis and damage tolerance methods. 2. Discuss an overview of mechanical behavior which includes tensile, fatigue and creep. 3. 11 Hours Role of failure prevention analysis in mechanical design, Modes of mechanical failure, Review of failure theories for ductile and britle materials including Mohr's theory and modified Mohr's theory, Numerical examples. Introductory concepts, High cycle and low cycle fatigue, Fatigue design models, Fatigue design methods, Fatigue design criteria, Fatigue testing, Test methods and standard test specimens, Fatigue fracture surfaces and macroscopic features, Fatigue enchanisms and microscopic features. 11 Hours S-N curves	Course Code	Course Title	Course Type	L	Т	Р	C	Hr		
Prerequisite: TOE, TOP and DME-1 and 2 Internal Assessment Semester End Exam Objectives 1. Knowledge of different modes of failures & faigue behavior of materials 50 Marks 50 Marks Objectives 1. Knowledge of different modes of failures & faigue behavior of materials 2. To identify the Life estimation and stress component subjected to finite and infinite life. 3. Introduction to fracture mechanics and stress intensity factor. 4. Understand different damage tolerant theories used to estimate life and Types of surface failures, contact stresses. 20 Outcomes 1. Classify and explain the art of design methodology by analysis and damage tolerance methods. 2. 0. Discuss an overview of mechanical behavior of materials 11 Hours Role of failure prevention analysis in mechanical design, Modes of mechanical failure, Review of failure theories for ductile and brittle materials including Mohr's theory and modified Mohr's theory, Numerical examples. Introductory concepts, High cycle and low cycle fatigue, Fatigue design models, Fatigue design methods, Fatigue design criteria, Fatigue testing, Test methods and standard test specimens, Fatigue fracture surfaces and macroscopic features, Fatigue mechanisms, Constant life diagrams, Fatigue Iife estimation using S-N approach. Monotonic stress-strain behavior, Strain controlled test methods, Cyclic stress-strain behavior, Strain based approach to life estimation, Determination of strain life fatigue properties, mean stress effects,	M18MD2071	Advanced Machine Design		4	0	0	4	4		
Assessment Exam 50 Marks Course Objectives 1. Knowledge of different modes of failures & fatigue behavior of materials To identify the Life estimation and stress component subjected to finite and infinite life. 3. Introduction to fracture mechanics and stress intensity factor. 4. Understand different damage tolerant theories used to estimate life and Types of surface failures, contact stresses. Course At the end of the course, the student will be able to Outcomes 1. Classify and explain the art of design methodology by analysis and damage tolerance methods. 2. Discuss an overview of mechanical behavior which includes tensile, fatigue and creep. 3. Illustrate the micro mechanisms of brittle and ductile fracture. 4. Examine the fatigue and fracture behavior of materials 11 Hours Role of failure prevention analysis in mechanical design, Modes of mechanical failure, Review of failure theories for ductile and brittle materials including Mohr's theory and modified Mohr's theory, Numerical examples. Introductory concepts, High cycle and low cycle fatigue, Fatigue design models, Fatigue design methods, Fatigue test data, General S-N behavior, Mean stress effects, Different factors influencing S-N behavior, S-N curve representation and approximations, Constant life diagrams, Fatigue life estimation using S-N approach. Monotonic stress-strain behavior, Strain controlled test methods, Cyclic stress-strain behavior, Strain based approach to life estimation, Determination of strain life fatigue properties, mean stress effects, Effect of surface finish, Life estimation by S-N approach. Unit:3	Prerequisite: TOE	8		Int	ternal		Sem	ester End		
Course Objectives 1. Knowledge of different modes of failures & fatigue behavior of materials Objectives 1. Knowledge of different modes of failures & fatigue behavior of materials Objectives 2. To identify the Life estimation and stress component subjected to finite and infinite life. 3. Introduction to fracture mechanics and stress intensity factor. 4. Understand different damage tolerant theories used to estimate life and Types of surface failures, contact stresses. Course At the end of the course, the student will be able to Outcomes 1. Classify and explain the art of design methodology by analysis and damage tolerance methods. 2. Discuss an overview of mechanical behavior of materials 11 Hours Role of failure prevention analysis in mechanical design, Modes 11 Hours Role of failure prevention analysis in mechanical design, Modes of mechanisms and microscopic features. 11 Hours Stress-life (S-N) approach and strain-life (e-N) approach 11 Hours S-N curves, Statistical nature of fatigue test data, General S-N behavior, Mean stress effects, Different factors influencing S-N behavior, S-N curve representation and approximations, Constant life diagrams, Fatigue life estimation using S-N approach. Monotonic stress-strain behavior, Strain controlled test methods, Cyclic stress-strain behavior, Strain based approach to life estimation, Determination of strain life fatigue properties, mean stress effects, Effect of surface finish, Life estimation by S-N approach. Unit:3 <td>-</td> <td></td> <td></td> <td>Asse</td> <td>essme</td> <td>nt</td> <td>I</td> <td>Exam</td>	-			Asse	essme	nt	I	Exam		
Objectives 2. To identify the Life estimation and stress component subjected to finite and infinite life. 3. Introduction to fracture mechanics and stress intensity factor. 4. Understand different damage tolerant theories used to estimate life and Types of surface failures, contact stresses. Course At the end of the course, the student will be able to Outcomes 1. Classify and explain the art of design methodology by analysis and damage tolerance methods. 2. Discuss an overview of mechanical behavior which includes tensile, fatigue and creep. 3. Illustrate the micro mechanisms of brittle and ductile fracture. 4. Examine the fatigue and fracture behavior of materials 11 Hours Role of failure prevention analysis in mechanical design, Modes of mechanical failure, Review of failure theories for ductile and brittle materials including Mohr's theory and modified Mohr's theory, Numerical examples. Introductory concepts, High cycle and low cycle fatigue, Fatigue design methods, Fatigue design criteria, Fatigue testing, Test methods and standard test specimens, Fatigue fracture surfaces and macroscopic features, Fatigue mechanisms, and microscopic features. Unit:2 Stress-life (S-N) approach and strain-life (ɛ-N) approach 11 Hours S-N curves, Statistical nature of fatigue test data, General S-N behavior, Mean stress effects, Different factors influencing S-N approach. Monotonic stress-strain behavior, Strain controlle test methods, Cyclic stress-strain behavior, Strain baead approach to life estimation using S-N approach. Monotonic stress-strain behavior, Strain controlle test methods, Cy				50	Mark	s	50	Marks		
and infinite life. 3. Introduction to fracture mechanics and stress intensity factor. 4. Understand different damage tolerant theories used to estimate life and Types of surface failures, contact stresses. Course At the end of the course, the student will be able to Outcomes 1. Classify and explain the art of design methodology by analysis and damage tolerance methods. 2. Discuss an overview of mechanical behavior which includes tensile, fatigue and creep. 3. 3. Illustrate the micro mechanisms of brittle and ductile fracture. 4. 4. Examine the fatigue behavior of materials 11 Hours Role of failure prevention analysis in mechanical design, Modes of mechanical failure, Review of failure theories for ductile and brittle materials including Mohr's theory and modified Mohr's theory, Numerical examples. Introductory concepts, High cycle and low cycle fatigue, Fatigue design models, Fatigue design methods, Fatigue fracture surfaces and macroscopic features, Fatigue mechanisms and microscopic features. Unit:2 Stress-life (S-N) approach and strain-life (e-N) approach 11 Hours S-N curves, Statistical nature of fatigue test data, General S-N behavior, Mean stress effects, Different fatograms, Fatigue life estimation using S-N approach. Monotonic stress-strain behavior, Strain controlled test methods, Cyclic stress-strain behavior, Strain based approach to life estimation, Detinition sof types of fracture and failure, Introduction to stress intensity approach.	Course	1. Knowledge of differen	t modes of failu	res & fa	atigue	beh	avior of	materials		
Course At the end of the course, the student will be able to Outcomes 1. Classify and explain the art of design methodology by analysis and damage tolerance methods. 2. Discuss an overview of mechanical behavior which includes tensile, fatigue and creep. 3. Illustrate the micro mechanisms of brittle and ductile fracture. 4. Examine the fatigue and fracture behavior of materials 11 Hours Role of failure prevention analysis in mechanical design, Modes of mechanical failure, Review of failure theories for ductile and brittle materials including Mohr's theory and modified Mohr's theory, Numerical examples. Introductory concepts, High cycle and low cycle fatigue, Fatigue design models, Fatigue design methods, Fatigue design criteria, Fatigue testing, Test methods and standard test specimens, Fatigue tracture surfaces and macroscopic features. Fatigue mechanisms of Different factors influencing S-N behavior, S-N curve representation and approximations, Constant life diagrams, Fatigue life estimation using S-N approach. Monotonic stress-strain behavior, Strain controlled test methods, Cyclic stress-strain behavior, Strain based approach to life estimation, Determination of strain life fatigue properties, mean stress effects, Effect of surface finish, Life stimation by S-N approach. 11 Hours Lift Concepts, Crack tip plastic zone, Fracture toughness, Fatigue crack growth, Mean stress effects, Crack growth life estimation. Definitions of types of fracture and failure, Introduction to stress intensity factors where surfaces and the stresses intensity factors and stresses, stress intensity factors residual stresses, applications. 11 Hours	Objectives	and infinite life. 3. Introduction to fracture 4. Understand different d	 and infinite life. Introduction to fracture mechanics and stress intensity factor. Understand different damage tolerant theories used to estimate life and 							
Outcomes 1. Classify and explain the art of design methodology by analysis and damage tolerance methods. 2. Discuss an overview of mechanical behavior which includes tensile, fatigue and creep. 3. Illustrate the micro mechanisms of brittle and ductile fracture. 4. Examine the fatigue and fracture behavior of materials. 11 Hours Role of failure prevention analysis in mechanical design, Modes of mechanical failure, Review of failure theories for ductile and brittle materials including Mohr's theory and modified Mohr's theory, Numerical examples. Introductory concepts, High cycle and low cycle fatigue, Fatigue design methods, Fatigue design methods, Fatigue design criteria, Fatigue testing, Test methods and standard test specimens, Fatigue fracture surfaces and macroscopic features, Fatigue mechanisms and microscopic features. Unit:2 Stress-life (S-N) approach and strain-life (e-N) approach 11 Hours S-N curves, Statistical nature of fatigue test data, General S-N behavior, Mean stress effects, Different factors influencing S-N behavior, S-N curve representation and approximations, Constant life diagrams, Fatigue life estimation using S-N approach. Monotonic stress-strain behavior, Strain controlled test methods, Cyclic stress-strain behavior, Strain based approach to life estimation, Determination of strain life fatigue properties, mean stress effects, Effect of surface finish, Life estimation by S-N approach. Unit:3 Linear elastic fracture mechanics & residual stresses: 11 Hours LEFM concepts, Crack tip plastic zone, Fracture toughness, Fatigue crack growth, Mean stress effects, Crack growth life estinantion. Definitions of types of fracture and	Course									
Role of failure prevention analysis in mechanical design, Modes of mechanical failure, Review of failure theories for ductile and brittle materials including Mohr's theory and modified Mohr's theory, Numerical examples. Introductory concepts, High cycle and low cycle fatigue, Fatigue design models, Fatigue design methods, Fatigue design criteria, Fatigue testing, Test methods and standard test specimens, Fatigue fracture surfaces and macroscopic features, Fatigue mechanisms and microscopic features.Unit:2Stress-life (S-N) approach and strain-life (ε-N) approach11 HoursS-N curves, Statistical nature of fatigue test data, General S-N behavior, Mean stress effects, Different factors influencing S-N behavior, S-N curve representation and approximations, Constant life diagrams, Fatigue life estimation using S-N approach. Monotonic stress-strain behavior, Strain controlled test methods, Cyclic stress-strain behavior, Strain based approach to life estimation, Determination of strain life fatigue properties, mean stress effects, Effect of surface finish, Life estimation by S-N approach.11 HoursLEFM concepts, Crack tip plastic zone, Fracture mechanics & residual stresses: intensity factor and strain energy release rate, stress intensity approach.11 HoursResidual Stress: applications.Introduction, production of residual stresses & fatigue resistance, relaxation of residual stresses, measurement of residual stresses, stress intensity factors for residual stresses, applications.12 Hours	Outcomes	tolerance methods.2. Discuss an overview of fatigue and creep.3. Illustrate the micro mech	 Classify and explain the art of design methodology by analysis and damage tolerance methods. Discuss an overview of mechanical behavior which includes tensile, fatigue and creep. Illustrate the micro mechanisms of brittle and ductile fracture. 							
failure theories for ductile and brittle materials including Mohr's theory and modified Mohr's theory, Numerical examples. Introductory concepts, High cycle and low cycle fatigue, Fatigue design models, Fatigue design methods, Fatigue design criteria, Fatigue testing, Test methods and standard test specimens, Fatigue fracture surfaces and macroscopic features, Fatigue mechanisms and microscopic features.Unit:2Stress-life (S-N) approach and strain-life (ε-N) approach11 HoursS-N curves, Statistical nature of fatigue test data, General S-N behavior, Mean stress effects, Different factors influencing S-N behavior, S-N curve representation and approximations, Constant life diagrams, Fatigue life estimation using S-N approach. Monotonic stress-strain behavior, Strain controlled test methods, Cyclic stress-strain behavior, Strain based approach to life estimation, Determination of strain life fatigue properties, mean stress effects, Effect of surface finish, Life estimation by S-N approach.11 HoursLUnit:3Linear elastic fracture mechanics & residual stresses:11 HoursLEFM concepts, Crack tip plastic zone, Fracture toughness, Fatigue crack growth, Mean stress effects, crack growth lite estimation. Definitions of types of fracture and failure, Introduction to stress intensity factor and strain energy release rate, stress intensity approach.11 HoursResidual Stress:Introduction, production of residual stresses & fatigue resistance, relaxation of residual stresses, measurement of residual stresses, stress intensity factors for residual stresses, applications.12 Hours	Unit:1	Introduction and fatigue beha	vior of materia	ls				11 Hours		
S-N curves, Statistical nature of fatigue test data, General S-N behavior, Mean stress effects, Different factors influencing S-N behavior, S-N curve representation and approximations, Constant life diagrams, Fatigue life estimation using S-N approach. Monotonic stress-strain behavior, Strain controlled test methods, Cyclic stress-strain behavior, Strain based approach to life estimation, Determination of strain life fatigue properties, mean stress effects, Effect of surface finish, Life estimation by S-N approach.Unit:3Linear elastic fracture mechanics & residual stresses:11 HoursLEFM concepts, Crack tip plastic zone, Fracture toughness, Fatigue crack growth, Mean stress effects, crack growth life estimation. Definitions of types of fracture and failure, Introduction to stress intensity factor and strain energy release rate, stress intensity approach.Residual stresses:Introduction, production of residual stresses & fatigue resistance, relaxation of residual stresses, measurement of residual stresses, stress intensity factors for residual stresses, applications.Unit:4Fatigue from variable amplitude loading12 Hours	Numerical exampl Fatigue design m specimens, Fatigu	les. Introductory concepts, High on the set of the set	cycle and low cy Fatigue testing	vcle fati g, Test	gue, I meth	Fatig ods	ue desig and sta	gn models, ndard test		
S-N curves, Statistical nature of fatigue test data, General S-N behavior, Mean stress effects, Different factors influencing S-N behavior, S-N curve representation and approximations, Constant life diagrams, Fatigue life estimation using S-N approach. Monotonic stress-strain behavior, Strain controlled test methods, Cyclic stress-strain behavior, Strain based approach to life estimation, Determination of strain life fatigue properties, mean stress effects, Effect of surface finish, Life estimation by S-N approach.Unit:3Linear elastic fracture mechanics & residual stresses:11 HoursLEFM concepts, Crack tip plastic zone, Fracture toughness, Fatigue crack growth, Mean stress effects, crack growth life estimation. Definitions of types of fracture and failure, Introduction to stress intensity factor and strain energy release rate, stress intensity approach.Residual stresses:Introduction, production of residual stresses & fatigue resistance, relaxation of residual stresses, measurement of residual stresses, stress intensity factors for residual stresses, applications.Unit:4Fatigue from variable amplitude loading12 Hours	Unit:2	Stress-life (S-N) approach and	l strain-life (ε-Ν) appr	oach			11 Hours		
LEFM concepts, Crack tip plastic zone, Fracture toughness, Fatigue crack growth, Mean stress effects, Crack growth life estimation. Definitions of types of fracture and failure, Introduction to stress intensity factor and strain energy release rate, stress intensity approach. Residual Stress: Introduction, production of residual stresses & fatigue resistance, relaxation of residual stresses, measurement of residual stresses, stress intensity factors for residual stresses, applications.Unit:4 Fatigue from variable amplitude loading 12 Hours	factors influencin diagrams, Fatigue controlled test m Determination of	ng S-N behavior, S-N curve r e life estimation using S-N ap ethods, Cyclic stress-strain beh strain life fatigue properties, n	epresentation a proach. Monoto avior, Strain b	nd app onic str ased ap	roxin ress-s oproa	nation train ch to	ns, Con behave o life e	nstant life ior, Strain estimation,		
Crack growth life estimation. Definitions of types of fracture and failure, Introduction to stress intensity factor and strain energy release rate, stress intensity approach.Residual Stress: Introduction, production of residual stresses & fatigue resistance, relaxation of residual stresses, measurement of residual stresses, stress intensity factors for residual stresses, applications.Unit:4Fatigue from variable amplitude loading12 Hours	Unit:3	Linear elastic fracture mecha	nics & residual	stresse	s:			11 Hours		
intensity factor and strain energy release rate, stress intensity approach. Residual Stress: Introduction, production of residual stresses & fatigue resistance, relaxation ofresidual stresses, measurement of residual stresses, stress intensity factors for residual stresses, applications.Unit:4Fatigue from variable amplitude loading12 Hours	LEFM concepts, C	Crack tip plastic zone, Fracture to	ughness, Fatigue	e crack	growt	h, M	lean stre	ess effects,		
applications.Unit:4Fatigue from variable amplitude loading12 Hours	intensity factor an Residual Stress:	d strain energy release rate, stress Introduction, production of res	intensity appro- idual stresses &	ach. & fatigu	ie res	sistar	nce, rel	axation of		
Unit:4Fatigue from variable amplitude loading12 Hours	•									
		Fatique from variable amplite	ide loading					12 Hours		
		U	6	d the e	oncor	te of	Domo			

and accumulation, Cumulative damage theories, Load interaction and sequence effects, Cycle									
counting methods.	counting methods, Life estimation using stress life approach.								
Text Books	1. Metal Fatigue in Engineering, R. I. Stephens, A. Fatemi, R. R. Stephens, H.								
	Fuchs, John Wiley Newyork, 2 nd edition, 2001.								
	2. Failure of Materials in Mechanical Design, J. A. Collins, JWiley, Newyork,								
	1992.								
	3. Machine Design, R. L. Norton, Pearson Education India, 2000.								
References	1. Fatigue of Material, S. Suresh, Cambridge University Press, 1998.								
	2. Fundamentals of Metal Fatigue Analysis, J. A. Benantine, Prentice Hall,								
	1990.								
	3. Fatigue and Fracture, ASM Hand Book, Vol 19, 2002.								

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	PO ₁₁
											(k)
CO ₁											
CO ₂											
CO ₃											
CO ₄											

Course Code	Course Title	Course Type	L	Т	Р	С	Hr				
M18MD2072	Robotics and Its	SC	4	0	0	4	4				
	Application	SC	4	0	U	4	4				
Prerequisite: C	CAD/CAM/CIM		Ir	ternal		Sem	nester End				
			Ass	essment	t		Exam				
			50	Marks		50 Marks					
Course	1. Learn the concepts of robot	representat	tion usin	ng conc	epts	of kir	nematics &				
Objectives	forward and inverse Kinemat3. Learn basic methods & al obstacles uninformed path sea	 Learn & understand the Matrix Representation, Homogeneous transformation, forward and inverse Kinematics Learn basic methods & algorithms of Trajectory planning: avoidance of obstacles uninformed path search. Learn the Image processing Vs image analysis, image Acquisition. 									
Course	After Completion of the course st		•		4						
Outcomes	1. Formulate the Mathematical r	representation	on of Rol	oots, Ki	nema	atics of	Robot				
	2. Determine the Trajectory plan	U									
	3. Understand the basic principl	e of Machir	ne Visior	n system	ns, in	nage ac	equisition &				
	image components. 4. Apply the knowledge to design										
	4. Apply the knowledge to design actual robots to perform basic operations such as pick & place line follower robots etc.										
Unit:1	Introduction to Robotic		f joints				12 Hours				
Robotics Intro	duction: Basic Structure, Classi		-	nd Rob	otic	system	s –laws of				
	motions – work space, precision o					5					
	: Rotary, prismatic, cylindrical & s			ion& oi	rienta	ation of	rigid body,				
	s & fixed frames, Euler angle repre										
	Mathematical representation	of Robots, l	Kinema	tics of			10 11				
Unit:2	Robo	t					12 Hours				
Mathematical	representation of Robots, H	Kinematics	of Ro	bot :	Inti	oductio	on, Matrix				
Representation,	Homogeneous transformation, for	rward and in	nverse K	linemati	cs, I	nverse	Kinematics				
Programming,	Degeneracy, dexterity, transformation	ation matrix	x for 3	R mani	pula	tor, pu	ma 560 &				
SCARA manipu	ılator.										
Unit:3	Trajectory p	lanning					11 Hours				
Trajectory plan	nning : avoidance of obstacles un	informed pa	th searc	h, infor	med	path se	earch, A* &				
B* algorithms,	bus algorithms with tactile sensors	& case stud	ies								
Unit:4	Machine Visio	n systems					10 Hours				
Machine Vision	n systems : Introduction – Image	processing	Vs imag	ge analy	sis, i	mage A	Acquisition,				
digital Images -	- Sampling and Quantization – Ima	ge definition	n, levels	of Com	putat	ion					
Text Books	1. Introduction to Robotics	• ,	•								
D (2nd edition, Pearson Educ						,				
References	1. Industrial Robotics Technology, Programming and Applications, M.P.										
	Groover McGraw-Hill, USA, 1986.2. Machine Vision: Ramesh Jam, Rangachari Kasturi, Brain G. Schunck, Tata										
	McGraw-Hill, 1991.										
	3. Robotics for Engineers , Yoremkoren, McGraw-Hill, USA, 1987.										
	4. Robotics and Image Processing, P.A. Janaki Raman, Tata McGraw-Hill,										
	1991.										

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	Р
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	0	O_1
										(j)	1
											(k)
CO ₁											
CO ₂											
CO ₃											
CO ₄											

Course Code	Course Title	Course Type	L	T	P	C	Hr		
M18MD2073	Optimization in Engineering Design	SC	4	0	0	4	4		
Prerequisite: O	peration Research, Project Management	,	Int	erna	al Semester End				
Optimization Tec	chniques		Asse	essme	ent Exam				
			50	Mark	S	5	0 Marks		
Course	1. It aims at finding out Enginee	ring Design	Practio	ce a	nd A	Applic	cations of		
Objectives	Optimization in Engineering Design								
-	2. It provides the designer to , Design	Variables and	l Desigr	ı Coi	nstrai	nts			
	3. It helps in solving the Gradient Base		Ũ				d Direct.		
	4. It gives an idea about the Manufactu	-							
Course	Upon Completion of the course studen								
Outcomes	1. Identify the fundamentals of Engin			ce.					
	2. Test the Optimum Design Problem	0 0							
	3. Detect the Gradient Based Optimiz								
	4. Investigate the Manufacturabil	• •	timizati	on	Prol	olems	, Design		
	Interpretation and Dynamic Progra	mming.							
Unit:1	Engineering Design H	Practice					12 Hours		
Engineering De	esign Practice: Evolution of Design '		Introdu	ctior	to	Desig	n and the		
	Design versus Analysis, Role of Com								
•	cal Modeling with FEA and Correlation	-	-	<i>,</i>	1				
-	f Optimization in Engineering De	•		Aero	ospac	e and	d General		
	ations, Optimization of Metallic and	-			-				
	coblems, MDO and MOO.	1			, ,				
Unit:2	Design Problem Forn	ulation					12 Hours		
Optimum Desig	gn Problem Formulation: Types of (Proble	ms, '	The	Mathe	ematics of		
	esign Variables and Design Constraint								
-	Constraints, Discrete and Continuo					-			
Optimization.			,						
1	heory – Fundamental Concepts, Globa	al and Local	Minim	um.	Grad	ient V	Vector and		
-	Concept of Necessary and Sufficient								
	nge Multipliers and Kuhn Tucker Cond								
Unit:3	Gradient Based Optimizat		5				11 Hours		
	Optimization Methods – Dual and Di						11 110 010		
	Disciplines: Conceptual Design Optim		Design	Fine	Tur	ing.	Combined		
Optimization, Optimization of Multiple Static and Dynamic Loads, Transient Simulations,									
Equivalent Static Load Methods. Internal and External Responses, Design Variables in Each									
Discipline.									
Unit:4 Manufacturability in Optimization Problems 10 Hours									
	lity in Optimization Problems: Design			Ma	nufac	turin			
	ying Manufacturing Constraints to Optin		0	,			5 1110 110 110		
mia itaios, 1 ippi		112001011 1 100	~ · · · · · · · · · · · · · · · · · · ·						

Multiple Solutions, Active and Inactive Constraints, Constraint Violations and Constraint Screening, Design Move Limits, Local and Global Optimum .

Dynamic Programming: Introduction, Multistage decision processes, Principle of optimality, Computational Procedure in dynamic programming, Initial value problem, Examples.

Text Books	1. Engineering Optimization: Theory and Practice- S.S.Rao, John Wiley, 2009
	2. Introduction to Optimum Design- JasbirArora, McGraw Hill, 2011.
References	1. Optimization and Probability in System Engg - Ram, Van Nostrand.
	2. Optimization methods - K. V. Mital and C. Mohan, New age International
	Publishers, 1999.
	3. Optimization methods for Engg. Design - R.L Fox, Addison – Wesley, 1971.

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	PO ₁₁
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)
CO ₁											
CO ₂											\checkmark
CO ₃											
CO ₄											

THIRD SEMESTER

Course Code	Course Title	Course Type	L	Т	Р	C	Hr
M18MD3010	Fatigue and Fracture Mechanics	HC	3	1	0	4	5
Prerequisite: E	Engg. Mathematics, TOE, TOP, M	SM		Inter	nal	Sen	nester End
1.1.1	66			Assess			Exam
				50 M	arks	5	0 Marks
Course	1. To enable the students to unc	lerstand the F	unda	mental C	Concep	ts, His	storical
Objectives	perspective, Linear Elastic F	racture Mech	anics				
	2. Provide systematic basic kno	wledge for C	rack-	Tip-Ope	ning D	oisplac	cement, The
	J Contour integral, Relations	hips Between	J and	d CTOD	,		
	3. To enable the students to und	lerstand Ducti	le Fra	acture, C	leavag	e, the	Ductile-
	Brittle Transition, and Inter	rgranular Frac	ture.				
	4.Knowledge about the Genera	l Considerati	ons, I	KIc Testi	ng, K-	R Cur	ve Testing
Course	After completion of the course the	ne student wil	l be a	ble to			
Outcomes	1. Demonstrate the fundamenta	ls of Stress A	nalys	is of Cra	acks, R	elatio	nship
	between K and G						
	2. Formulate the Elastic-Plastic	e Fracture Me	chani	cs & Dy	namic	and T	ïme-
	Dependent Fracture						
	3. Determine the Fracture Mech					1.	
Unit:1	4Derive the Fracture Toughn Fundamental		r Met	ais & No	on Met		Hours
	Concepts: Introduction, Historica	_	Line	ar Flast	ic Fra		
	w of Fracture, Stress Concentration						
	elease Rate, Instability and the R					-	•
	G, Crack-Tip Plasticity, K-Contro			•			-
	ction of Multiple Cracks.		, ,			,	
11:40	Elastic-Plastic Fracture Me	chanics & Dy	nam	ic and		10.1	T
Unit:2	Time-Depender	nt Fracture				12	Hours
Elastic-Plastic	Fracture Mechanics: Crack-Tip	-Opening Di	splac	ement, 7	The J (Conto	ur integral,
Relationships B	etween J and CTOD, Crack-Grow	th Resistance	Curv	ves, Con	trolled	Fract	ure, Crack-
-	Under Large-Scale Yielding, Num	-					
Dynamic and	Time-Dependent Fracture: Dyna	amic Fracture	e and	Crack A	Arrest,	Effect	of fatigue
on Creep Crack	Growth, Viscoelastic Fracture Me	echanics.					
Unit:3	Fracture Mechanisms in					Hours	
	nanisms in Metals: Ductile Fract	ure, Cleavage	e, the	Ductile	-Brittle	e Trar	sition, and
Intergranular Fr			~		~	. ~	
	anisms in Non-metals: Engineer	ing Plastics, C	Ceran	nics and	Ceram	ic Co	mposites,
	ughening, Concrete and Rock.				10		
Unit:4	Fracture Toughness Testing					Hours	
U	hness Testing of Metals: General				0		U.
J lesting of M	etals, CTOD Testing, Dynamic a	und Crack-Ar	rest	rougnne	ss, Fra	iciure	resung of

Weldments, Testing and Analysis of Steels in the Ductile-Brittle Transition Region, Qualitative Toughness Tests, Numerical problems.

Fracture Testing of Non-metals: Fracture Toughness Measurements in Engineering Plastics, Precracking and Other Practical Matters, Inter laminar Toughness of Composites, Ceramics.

Text Books	1. Fracture Mechanics: Fundamentals and Applications by T.L. Anderson, CRC
	Press, Florida
References	1. Elementary Engineering Fracture Mechanics by D. Broek,
	MartinusNijhoff.
	2. The Practical Use of Fracture Mechanics by D. Broek, Kluwer Academic
	Publishers.
	3. Deformation and Fracture Mechanics of Engg. Materials by R. W.
	Hertzberg, John-Wiley & Sons.
	4. Fracture and Fatigue Control in Structures: Applications of fracture
	mechanics by J.M. Barsom and S.T. Rolfe, ASTM International.
	5. Mechanics and Mechanisms of Fracture: An Introduction by A. F.
	Liu,ASTM International.

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	PO ₁₁
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)
CO ₁											
CO ₂											
CO ₃											
CO ₄											

Course Code	Course Title	Course Type	L	T	Р	C	Hr						
M18MD3020	Modern Automotive System	OE	4	0	0	4	4						
Prerequisite: IC E	Ingines, Turbo Machines ,Automobile Eng	gineering	Iı	ntern	al	S	emester						
			Ass	sessn	nent	E	nd Exam						
			50) Ma	rks	ent End Exam 50 Marks pes, drag forces f on fundamentals nission systems Heat exchangers Injection Control 12 Hours n SI & CI), and							
Course	1. To enable the students to understand Aerodynamic Shapes, drag forces small family cars												
Objectives	small family cars												
	2. Provide systematic basic knowledge of Combustion fundamenta												
	combustion chamber design												
	3. To enable the students to understand Design of transmission systems												
	gearbox												
	4. Formulate the to understand the basic principles of Heat exchangers												
	application to design of cooling syst	em											
Course Outcomes	After completion of the course the stude	ent will be	able	to									
	1. Demonstrate the fundamentals of E	• •		Fuel	l Inje	ction							
	2. Formulate design for both SI & C.												
	3. Determine the Transmission & Susp				C	Heat exchanger njection Control 12 Hours SI & CI), and 12 Hours cylinder head & piston rings for 11 Hou							
	4. Describe the Cooling & Exhaust S	ystem and	Emis	ssion	Con	trol							
Unit:1	Body Shapes & Fuel Inje	ction				12 F	Iours						
Body Shapes: Aero	odynamic Shapes, drag forces for small fa	mily cars.											
Fuel Injection: Sp	ray formation, direct injection for single c	cylinder en	gines	s (bo	th SI	& C	I), and						
energy audit.													
Unit:2	Design of I.C. Engine	j				12 H	Iours						
Design of I.C. Eng	gine I: Combustion fundamentals, combus	stion cham	ber d	lesig	n, cy	linde	r head						
design for both SI &	& C. I. Engines.												
Design of I.C. Eng	gine II: Design of crankshaft, camshaft, co	onnecting	rod, j	pisto	n & p	oistoi	n rings for						
small family cars (1	max up to 3 cylinders).												
Unit:3	Transmission & Suspension	System					11 Hours						
Transmission Syst	tem: Design of transmission systems – ge	arbox (ma	x of 4	4-spe	eeds),	diffe	erential.						
Suspension System	n : Vibration fundamentals, vibration analy	ysis (single	e & t	wo d	legree	e of f	reedom,						
vibration due to eng	gine unbalance, application to vehicle sus	pension.											
Unit:4	Cooling & Exhaust Syst	tem					10 Hours						
Cooling System: H	leat exchangers, application to design of a	cooling sys	stem	(wat	er co	oled)	•						
Emission Control :	Common emission control systems, mea	surement of	of mi	ssior	ıs, ex	haus	t gas						
emission testing.													
Text Books	1. Design of Automotive Engines, - A	.Kolchind	& V.]	Dem	idov,	MIR							
	Publishers, Moscow2. The motor vehicle, Newton steeds	&Garratta	. Tiiff		sone	I td	London						
	3. I.C. Engines - Edward F Obert, Inte												
References	1. Introduction to combustion- Turns				2011	ung							
	2. Automobile Mechanic -,N.K.Giri,		blica	ation	s, 199	94							
	3. I.C. Engines - Maleev, McGraw Hil												

4.	Diesel Engine Design -HeldtP.M., Chilton company New York.
5.	Problems on design of machine elements -V.M. Faires&Wingreen,
6.	McMillan Company., 1965 Design of I.C.Engines -John Heywood, TMH

Program outcomes	PO ₁	PO ₂	PO ₃	PO_4	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	PO ₁₁
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)
CO ₁											
CO ₂											
CO ₃											
CO ₄											

Course Code	Course Title	Course Type	L	T			Hr
M18MD3030	Internship With Report	RULO	0	0	6	6	12
Prerequisite: M	echanical Vibrations, Automotive	Engineering	3				
Course	1. To give exposure to industria	al activities.					
Objectives	2. To learn various aspects of a						
	3. To understand application	of concept	ts of	m	echa	nical	engineering in
	industry.						
	4. To know various process and		ised	to m	ake	a prod	uct.
	5. To gain overall idea about in	•					
Course	After completion of the course the	he student w	vill be	e abl	le to		
Outcomes	1. Explain various aspects of	of industry v	vorki	ng p	orinc	iple ar	nd culture.
	2. Understanding of the res make a product.	pective com	ipany	[,] me	thod	s and	process used to
	3. Explain the management industry.	t philosophy	and	cor	ncept	used	in particular
	4. Explain the activities of concept for entrepreneurs	-	ar in	dust	ry a	nd ad	opting of the
Student should u	indergo internship for 21 days in	one stretch	or 1	5 da	iys i	n two	stretches at the
end of the 3 rd s	emester. After completion, subm	it the 20 pa	age 1	epo	rt or	n inter	mship and give
	ch will be evaluated as per the uni						

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	PO ₁₁
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)
CO ₁											
CO ₂											
CO ₃											
CO ₄	\checkmark										

Course Code		Course Title	Course Type	L	T	Р	C	Hr					
M18MD3040		Project Phase-I	HC	0	0	4	4	8					
Prerequisite: Al	l previou	is courses taught in earlier seme	sters				•						
Course	1.	1. To identify the problem in real time application and find out the											
Objectives		solution											
5	2.	2. To make the students to convert their ideas in to reality.											
	3.	To develop the skill of writing,	documenta	ation	and	pres	entati	on					
Course	After o	completion of the course the stud	lent will be	able	e to								
Outcomes	1.	Identify the problems in the re	al time app	olicat	ion.								
	2.	Apply the knowledge to analy	ze the prob	lem.									
	3.	Document the progression of	the work ar	nd rea	sults								
	4. Design the process/ product for simple applications.												
The student h	ave to st	art project and select the problem					n indu	ustry or i					

The student have to start project and select the problems which is relevant to an industry or in the society or any innovative ideas. In project phase-I student has to work for the literature work and problems has to be clearly defined at the end semester and present the progress of the work in two phases which will be evaluated. At the end of the semester the students have to submit the hard copy of the report which will be prepared as per the guidelines/format of the university. Semester end evaluation will be conducted for each student.

Mapping of Po's and Co's

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	PO ₁₁
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)
CO ₁	\checkmark										
CO ₂											
CO ₃											
CO ₄											

Course Code	Course Title	Course Type	L	Т	Р	С	Hrs./ Wk.
M18MD3050	MUSIC / DANCE / SPORTS / THEATER / YOGA	RULO	0	0	2	2	2

Note: Music, Dance, and Theater courses are offered by the School of Performing Arts, whereas the Sports and Yoga courses are offered by the Department of Physical Education. The students have to choose any **ONE** of these courses.

A. YOGA FOR HEALTH

Course Objectives:

Following are the Course Objectives.

- To prepare the students for the integration of their physical, mental and spiritual faculties;
- To enable the students to maintain good health;
- To practice mental hygiene and to attain higher level of consciousness;
- To possess emotional stability, self control and concentration; and
- To inculcate among students self discipline, moral and ethical values.

Course Outcomes:

On completion of the course learners will be able to:

- Practice yoga for strength, flexibility, and relaxation.
- Learn techniques for increasing concentration and decreasing anxiety
- Become self disciplined and self-controlled
- Improve physical fitness and perform better in studies
- Gain self confidence to face the challenges in the society with commitment to serve the society

Course Contents

Unit-I:

Yoga: Introduction, Tips from Sage Patanjali's Yoga Sutras **Surya Namaskara:-** 10 counts,12 counts,16 counts

Unit-II:

Asanas: Sitting- Vajrasana, Dandasana, Padmasana, Matsyasana, Ardha Matsyendrasana, Suptavajrasana, Paschimottasana, Bakasana, Simhasana, Shirasasana.

Asanas: Standing- Tadasana, Trikonasana, Parshwa konasana, Veerabadrasana, Parivrutta trikonasana.

Unit-III:

Asanas: Prone Position- Bhujangasana, Dhanurasana, Shalabhasana. Asanas: Supine Position- Sarvangasana, Sethubandha sarvangasana, Halasana,

Karnapeedasana.

Mudras- Dhyana mudra, Chinmaya mudra, Namaste mudra, Nasika mudra

Unit-IV:

Pranayams:- Ujjayi, Nadi Shodhana, Anuloma – Viloma, Basthrika, Bhramari, Sheethali

Dhyana & its types

Competition format, Rules and their interpretations

B. SPORTS (VOLLEYBALL)

Course Objectives:

- 1. To learn the rules, fundamental skills, and strategies of volleyball.
- 2. To develop skills in passing, setting, serving, spiking, and blocking.
- 3. To learn basic offensive and defensive patterns of play.
- 4. To develop a positive attitude towards volleyball as a lifetime sport and to improve physical fitness through participation in volleyball.

Course Outcomes:

On completion of the course learners will be able to:

- 1. Learn basic skills and knowledge associated with volleyball.
- 2. Apply these skills while playing volleyball and exhibit improved performance
- 3. Improve physical fitness and practice positive personal and lifestyle.
- 4. Gain an understanding of the value of sports in attaining wellness, maintaining good health and developing spirit of teamwork.

Course Contents:

Unit-I

- Introduction about Volleyball
- Players Stance, Receiving and passing
- The Volley (Overhead pass), The Dig (Underhand pass), Service Reception

Unit-II

- Service- Under Arm Service, Tennis Service, Side Arm Spin Service, Round Arm Service, High spin service, Asian serve / American serve (floating)
- Setting the ball- Set for attack, Back set, Jump set

Unit-III

- Smash/Spike- Straight smash, Body turn smash, Wrist outward smash, Wrist inward smash
- Block- Single block, Double block, Three-man block

• Rolls- Overhead pass & back rolling, One hand underhand pass with side rolling, Forward dive

Unit-IV

- Attack Combination, Defense Systems, Libero play
- Court marking, Rules and their interpretations and Duties of officials

C. SPORTS (BASKETBALL)

Course Objectives:

- 1. To learn the rules, fundamental skills, and strategies of Basketball
- 2. To develop technical skills in passing, in ball handling, individual offense, individual defense, rebounding, screen, team offense, team defense and fast break.
- 3. To learn basic offensive and defensive strategies of play.
- 4. To develop a positive attitude towards Basketball as a lifetime sport and to improve physical fitness through participation in Basketball.
- 5. To develop positive understanding and appreciation of the basketball game.

Course Outcomes:

On completion of the course learners will be able to:

- 1. Learn basic skills and knowledge associated with basketball.
- 2. Apply these skills while playing basketball and exhibit improved performance
- 3. Improve physical fitness and practice positive personal and lifestyle.
- 4. Gain an understanding of the value of sports in attaining wellness, maintaining good health and developing spirit of teamwork.

Course Contents:

Unit-I

- Basketball: Introduction
- Grip; Player stance- Triple threat stance and Ball handling exercises
- Passing (Two hand/one hand)- Chest pass, Bounce Pass, Over head pass, Underhand pass, Hook Pass, Behind the back pass, Baseball pass, Side arm pass and passing in running.
- Receiving-Two Hand receiving, One hand receiving, Receiving in stationary position, Receiving while jumping, Receiving while running.

Unit-II

- Dribbling- How to start dribble, How to stop dribble, High / Low dribble with variations
- Shooting- Layup shot and its variations, One hand set shot, One hand jump shot, Free throw, Hook shot, Tip-in shot.

• Stopping- Stride/Scoot, Pivoting and Faking /Feinting footwork.

Unit-III

- Rebounding- Defensive rebound, Offensive rebound, Box out, Rebound Organization.
- Individual Defensive- Guarding the man with the ball and without the ball.
- Offensive drills, Fast break drills, Team Defense/Offense, Team Tactics

Unit-IV

• Court marking, Rules and their interpretations

D. SPORTS (FOOTBALL)

Course Objectives:

- 1. To learn the rules, fundamental skills, and strategies of football.
- 2. To develop skills in passing, receiving, controlling the ball, dribbling, shielding, shooting, tackling, beating a defender and heading in football.
- 3. To learn basic offensive and defensive patterns of play
- 4. To use different parts of the body in utilizing the above skills while playing football
- **5.** To develop a positive attitude towards football as a lifetime sport and to improve physical fitness through participation in football.

Course Outcomes:

On completion of the course learners will be able to:

- 1. Learn basic skills and knowledge associated with football.
- 2. Apply these skills while playing football and exhibit improved performance
- 3. Use the knowledge and understanding to perform, refine and adapt the above skills and related skills with precision, accuracy, fluency and clarity in any situation.
- 4. Improve physical fitness and practice positive personal and lifestyle.
- 5. Gain an understanding of the value of sports in attaining wellness, maintaining good health and developing spirit of teamwork.

Course Content:

Unit-I

Football: Introduction

Kicks- Inside kick, Instep kick, Outer instep kick, Lofted kick, Chipping, Volley, Half Volley

Trapping-Trapping rolling the ball, Trapping bouncing ball with sole

Unit-II

• Dribbling- With instep and outer instep of the foot.

- Heading- From standing, running and jumping.
- Feinting- With the lower limb and upper part of the body.
- •

Unit-III

- Tackling- Simple tackling, Slide tackling.
- Throw-in- Standing and Sliding
- Goal Keeping- Collection of balls, Ball clearance, throwing and deflecting.

Unit-IV

• Ground marking, Rules and their interpretations

E. SPORTS (TRACK AND FIELD)

Course Objectives:

- 1. To teach students the skilled techniques in sprints, relay running, hurdles, long jump, high jump, and shot put and practice them.
- 2. To develop competence among students in demonstrating all the techniques covered in the course.
- 3. To make students understand some of the scientific and empirical principles and their rationale underlying the development of skilled performance.
- 4. To inculcate among students the habit of team work and cooperative learning and develop competence in detecting / correcting technique errors.
- 5. To develop a positive attitude towards sports in general and athletics in particular and to improve physical fitness through participation in various athletic games / sports activities.

Course Outcomes:

On completion of the course learners will be able to:

- 1. Display competencies in executing basic techniques and skills associated with select track and field events.
- 2. Develop basic skills and techniques to improve one's running posture and take-off position for different jumps.
- 3. Learn regular practice of select track and field events and improve physical fitness
- 4. Appreciate track and field events by applying sports science knowledge to explain the execution of the events.

Course Content:

Unit-I

Athletics: Introduction Track Events - Steeple Chase, Race Walking, Middle and Long distance races Race walking - Technique, Faults and Officiating. Middle and Long distance races – Technique and Training

Unit-II

Jumping Events - High Jump and Triple Jump: Basic Skills and techniques High Jump - Straddle Roll & Flop Technique, Approach, Take-off, Technique in the air, Clearance over the bar & Landing

Triple Jump - Hop, Step and Jump Technique, Approach, Take-off & Landing

Unit-III

Throwing Events - Discus Throw and Hammer Throw: Basic Skills and techniques Discus Throw - Standing and Rotatory techniques, Grip, Stance, Rotation Technique, Power stance, Release and Reverse (Follow through)

Hammer Throw - Grip, Swings, Rotation foot work, Release and Follow through

Unit-IV

Rules, Officiating and Marking - Ground / Sector Marking, Interpretation of Rules.

Reference Books

(Athletics Part-I and Athletics Part-II)

- 1. Arthur E. Ellison (ed) (1994). Athletic Training and Sports Medicine.
- 2. Ballisteros, J.M. (1998). Hurdles Basic Coaching Manual, IAAF.
- 3. Bosen K.O. (1993). Teaching Athletics Skills and Technique.
- 4. Bosen K.O. (1990). Study Material on Hurdles for the Regular Course Students.
- 5. Doherty K. (1995). Track and Field Omni book.
- 6. Martin, David E. Peter N. Coe (1991). Training Distance Runner.
- 7. Howard S. (1981). Science of Track and Field Athletics.
- 8. Briggs Graeme (1987). "Track and field coaching Manual", Australian Track and Field Coaches Association. Rothmans Foundation National Sports Division.
- Carr, Gerry (1999). "Fundamentals of Track and Field. Track Athletics 1 Title G.V. 1060 5.e. 368.
- 10. I.A.A.F. Level-II (2001). Text Book on Jumping Event.
- 11. Jarver, Jesse (1987). "The Jumps", Track and Field Coaching Manual Australia.

F. DRAMATICS

Pre-requisites: Students with background in Theatre Arts/ Keen interest in Dramatics. **Course Objectives:**

- •To imbibe the acting skills.
- •To understand the broader applications of theatre studies in allied arts forms.
- •To be able to use body language for better communication.
- Students shall also be able to understand voice modulation and Navarasas.

Course Outcomes:

On successful completion of this course, students should be able to:

- Freely express improvisation in non-verbal communication.
- Shall hone good acting skills and be able to emote better.
- Be able to put up a theatre act and play a key role.
- Be able to differentiate good acting and understand the importance of good lyrics, stage crafting, music, dance, costume and lighting.

Course Content:

UNIT – 1

Working on Body:

Body and its analysis. Understanding physical abilities (Anga, Pratyanga and Upanga). Challenges of the body. Using body as metaphor and language. The class's bodies as a collective, an ensemble, a collaborative team.

UNIT – 2

Sound and Movement:

Awareness of creating sound patterns, voice modulations, rhythm in speech and diaologues. Understanding the rhythm and patterns of movements like walking, framing, shaping, primitive and animal movements.

UNIT – 3

Characterization and Improvisation:

Observation of people around. Getting into the role and living it. Developing a character from establishment (pace and rhythm). Improvisation techniques of body and mind.

UNIT - 4

Group work and Production:

Develop a theme, concept or a play and include all the theatre skills, stage craft, costuming and put up an act. Choosing theme and characters.

Reference Books:

- 1. All about Theatre Off stage Chris Hogget.
- 2. Rangadalli Anataranga K V Subbanna
- 3. The Indian Theatre Hemendranath Das Gupta.
- 4. A Practical handbook for an Actor Milisa Bruder, ee Milchel Cohn, Madeleine Oliek et al, Zigler Publisher.

G. INDIAN CLASSICAL DANCE FORMS (Bharathanatyam, Kuchipudi ,Mohiniyattam) Prerequisites: Background of classical dance training or any other dance forms. Note: Non-classical dancers can also join.

Course Objectives:

- To develop an understanding about the Indian classical dance forms and its universal application.
- To be able to understand the fine nuances of Classical dance.
- To understand the importance of health through Indian classical dance, strengthen the body capacity.
- To understand mythology and its characters in Indian classical dance form through lessons of Abhinaya.

Course Outcomes:

- To be able to identify and appreciate the classical dance forms.
- To be able to execute basics of Adavus with finesse.
- To be able to express through abhinaya.
- To be able to perform to perform the fundamentals in the chosen dance form.

Course Content:

Unit 1

An introduction to Indian classical dance forms: Bharatanatyam, Kuchipudi, Mohiniyattam.

Unit 2

Learning of Fundamentals: Exercises and Adavus- I (Bharathanatyam, Kuchipudi, Mohiniyattam).

Unit 3

Adavus –II (Bharathanatyam, Kuchipudi, Mohiniyattam)

Unit 4

Learn a basic composition in the chosen dance form.

Reference Books:

- 1. Indian classical dance forms -U S Krishna Rao, U K Chandrabhaga Devi
- 2. Classical Dances Sonal Mansingh, Avinash Parischa
- 3. Kuchipudi Sunil Kothari
- 4. Bharatanatyam An in depth study- Saroja vydyanathan
- 5. Mohiniyattam Bharathi Shivaji

H. PERCUSSION INSTRUMENT (TABLA AND MRIDANGAM)

Pre-requisites: Students with background in Percussion instruments and knowledge of Rhythm/ Keen interest in studying Mridagam / Tabala.

Course Objectives:

- •To understand the Rhythmology.
- •To understand the importance of Laya, Taala.
- •To be able to understand the fine finger techniques of playing the instrument.

Course Outcomes:

On successful completion of this course, students should be able to:

- To be able to set instrument to Sruthi.
- To be able to play the fundamentals on instrument.
- To be able to learn and perform a particular taala.

Course Content:

UNIT 1

- 1. Introduction to Musical Instruments
- 2. Percussion Instruments
- 3. Mridangam and its History

UNIT 2

- 1. Introduction to Tala System
- 2. Definitions of 5 jaathis and their recitation
- 3. Adi Talam and its various forms
- 4. Definitions and recitation of different gathis

UNIT 3

- 1. Tisra Jaathi
- 2. Khanda Jaathi
- 3. Misra jaathi
- 4. Sankeerna Jaathi

UNIT 4

- 1. Learning of Jathi Formation
- 2. Basic jathis
- 3. Jathis for Dance forms
- 4. Some Basic Definitions of Korvai, Teermanam etc.,

Reference Books:

- 1. Mridangam- An Indian Classical Percussion Drum Shreejayanthi Gopal
- 2. Theory and practice of Tabala Sadanand Naimpally.
- 3. Theory and practice of Mridangam Dharmala Rama Murthy

4. The Art of the Indian Tabala – Srdjan Beronja. <u>Mapping of Po's and Co's</u>

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	PO ₁₁
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)
CO ₁											
CO ₂											
CO ₃											
CO ₄											

FOURTH SEMESTER

Course Code	Course Title	Course Type	L	Т	Р	C	Hr					
M18MD4010	Project/DissertationHC001616											
Prerequisite: All previous courses taught in earlier semesters												
Course	1. To identify the problem in real time application and find out the solution											
Objectives	2. To make the students to convert their ideas in to reality.											
	. To develop the skill of writing, documentation and presentation.											
Course	After completion of the course the student will be able to											
Outcomes	1. Identify the problems in the real time application.											
	2. Apply the knowledge to analyze the problem.											
	3. Document the progress of the work	and results	5.									
	4. Design the process/ product for sin	ple applica	tions	5.								
The student have	to continue the project which he has sta	arted the pro	oblen	ns in	3 rd S	em fro	om an					
industry or in th	e society or any innovative ideas. Stud	dent has to	wor	k fo	r the	soluti	on or					
converting their	ideas into product and present the progr	ress of the v	vork	in tv	wo ph	ases v	which					
will be evaluated	. At the end of the semester the student	s have to su	ıbmi	t the	hard	copy	of the					
report which wil	l be prepared as per the guidelines/form	mat of the	univ	ersity	y. Se	meste	r end					
evaluation and vi	vo-voce will be conducted for each stud	ent.										

Mapping of Po's and Co's

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	PO ₁₁
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)
CO ₁											
CO ₂											
CO ₃											
CO ₄											

Course Code	Course Title	Course Type	L	Т	Р	C	Hr				
M18MD4020	MOOC/ SWAYAM/ On line		4								
	program	RULO		0	0	4					
Prerequisite: All pr	evious courses taught in earlier semester	:S									
Course Objectives	1. To provide an affordable and flexible way to learn new skills,										
	2. To advance the career										
	3. To deliver quality educational e	experiences	at sc	ale							
Course Outcomes	After completion of the course the stud	lent will be	able	to							

Note: Students shall choose to take up any online course of four credits as guided by the school or shall have to undergo internship of four weeks duration, the details of which are provided here under.

MOOC/ SWAYAM:

Globally, MOOC (Massive Open Online Course) platforms are gaining much popularity. Considering the popularity and relevance of MOOCs, Government of India has also launched an indigenous platform, SWAYAM. SWAYAM (Study Webs of Active Learning for Young Aspiring Minds) is basically an integrated MOOCs platform for distance education that is aimed at offering all the courses from school level (Class IX) to post-graduation level. The platform has been developed collaboratively by MHRD (Ministry of Human Resource Development) and AICTE (All India Council for Technical Education) with the help of Microsoft and is capable of hosting 2,000 courses.

A student shall register and successfully complete any of the courses available on SWAYAM.

Student shall inform the MOOC/SWAYAM coordinator of the school about the course to which he/she has enrolled. The minimum duration of the course shall be not less than 40 hours and of 4 credits. The student should submit the certificate issued by the SWAYAM to the MOOC/SWAYAM coordinator of the school, the grades obtained in the course shall be forwarded to concerned authority of the University.

List of some MOOC Centre:

- 1. Edx
- 2. Coursera
- 3. NPTEL
- 4. Swayam
- 5. Khan academy
- 6. Udacity

- 7. Udemy
- 8. Stanford online
- 9. WizIq

Mapping of Po's and Co's

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	PO ₁₁
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)
CO ₁											\checkmark
CO ₂											\checkmark

Career Development and Placement

Having a degree will open doors to the world of opportunities for you. But Employers are looking for much more than just a degree. They want graduates who stand out from the crowd and exhibit real life skills that can be applied to their organizations. Examples of such popular skills employers look for include:

- 1. Willingness to learn
- 2. Self motivation
- 3. Team work
- 4. Communication skills and application of these skills to real scenarios
- 5. Requirement of gathering, design and analysis, development and testing skills
- 6. Analytical and Technical skills
- 7. Computer skills
- 8. Internet searching skills
- 9. Information consolidation and presentation skills
- 10. Role play
- 11. Group discussion, and so on

REVA University therefore, has given utmost importance to develop these skills through variety of training programs and such other activities that induce the said skills among all students. A full-fledged Career Counseling and Placement division, namely Career Development Center (CDC) headed by well experienced senior Professor and Dean and supported by dynamic trainers, counselors and placement officers and other efficient supportive team does handle all aspects of Internships and placements for the students of REVA University. The prime objective of the CDC is to liaison between REVA graduating students and industries by providing a common platform where the prospective employer companies can identify suitable candidates for placement in their respective organization. The CDC organizes pre-placement training by professionals and also arranges expert talks to our students. It facilitates students to career guidance and improve their employability. In addition, CDC forms teams to perform mock interviews. It makes you to enjoy working with such teams and learn many things apart from working together in a team. It also makes you to participate in various student clubs which helps in developing team culture, variety of job skills and overall personality.

The need of the hour in the field of Machine Design is not only the knowledge in the subject, but also the skill to do the job proficiently, team spirit and a flavour of innovation. This kept in focus, the CDC has designed the training process, which will commence from second semester along with the curriculum. Special coaching in personality development, career building, English proficiency, reasoning, puzzles, and communication skills to every student of REVA University is given with utmost care. The process involves continuous training and monitoring the students to develop their soft skills including interpersonal skills that will fetch them a job of repute in the area of his / her interest and march forward to make better career. The School of Mechanical Engineering also has emphasised subject based skill training through lab practice, internship, project work, industry interaction and many such skilling techniques. The students during their day to day studies are made to practice these skill techniques as these are inbuilt in the course curriculum. Concerned teachers also continuously guide and monitor the progress of students.

The University has also established University-Industry Interaction and Skill Development Centre headed by a Senior Professor & Director to facilitate skill related training to REVA students and other unemployed students around REVA campus. The center conducts variety of skill development programs to students to suite to their career opportunities. Through this skill development centre the students shall compulsorily complete at least two skill / certification based programs before the completion of their degree. The University has collaborations with Industries, Corporate training organizations, research institutions and Government agencies like NSDC (National Skill Development Corporation) to conduct certification programs. REVA University has been recognised as a Centre of Skill Development and Training by NSDC (National Skill Development Corporation) under Pradhan Mantri Kaushal Vikas Yojana.

The University has also signed MOU's with Multi-National Companies, research institutions, and universities abroad to facilitate greater opportunities of employability, students' exchange programs for higher learning and for conducting certification programs.