

SCHOOL OF MECHANICAL ENGINEERING

M.Tech

in

Machine Design

HAND BOOK

2018-20

Rukmini Knowledge Park Kattigenahalli, Yelahanka, Bengaluru – 560064 www.reva.edu.in

School of Mechanical Engineering

M.Tech. (Machine Design)

HAND BOOK

2018-2020

Approved by Board of Studies

BOS/ME/MDD/2014-15/01/30-09-2014 BOS/ME/MDD/2015-16/02/30-04-2015 BOS/ME/MDD/2016-17/03/23-05-2016 BOS/ME/MDD/2017-18/04/13-05-2017 BOS/ME/MMD/ 2018-19/05/06-06-2018

Rukmini Knowledge Park, Kattigenahalli, Yelahanka, Bangalore - 560 064 PhoneNo:+91- 80 4696 6966, +91- 90211 90211

Rukmini Educational Charitable Trust

www.reva.edu.in

Chancellor's Message

"Education is the most powerful weapon which you can use to change the world."

- Nelson Mandela.

There was a time when survival depended on just the realization of physiological needs. We are indeed privileged to exist in a time when 'intellectual gratification' has become indispensable. Information is easily attainable for the soul that is curious enough to go look for it. Technological boons enable information availability anywhere anytime. The difference, however, lies between those who look for information and those who look for knowledge.

It is deemed virtuous to serve seekers of knowledge and as educators it is in the ethos at REVA University to empower every learner who chooses to enter our portals. Driven by our founding philosophy of 'Knowledge is Power', we believe in building a community of perpetual learners by enabling them to look beyond their abilities and achieve what they assumed impossible.

India has always been beheld as a brewing pot of unbelievable talent, acute intellect and immense potential. All it takes to turn those qualities into power is a spark of opportunity. Being at a University is an exciting and rewarding experience with opportunities to nurture abilities, challenge cognizance and gain competence.

For any University, the structure of excellence lies in the transitional abilities of its faculty and its facility. I'm always in awe of the efforts that our academic board puts in to develop the team of subject matter experts at REVA. My faculty colleagues understand our core vision of empowering our future generation to be ethically, morally and intellectually elite. They practice the art of teaching with a student-centered and transformational approach. The excellent infrastructure at the University, both educational and extra-curricular, magnificently demonstrates the importance of ambience in facilitating focused learning for our students.

A famous British politician and author from the 19th century - Benjamin Disraeli, once said 'A University should be a place of light, of liberty and of learning'. Centuries later this dictum still inspires me and I believe, it takes team-work to build successful institutions. I welcome you to REVA University to join hands in laying the foundation of your future with values, wisdom and knowledge.

Dr. P. Shyama Raju

The Founder and Hon'ble Chancellor, REVA University

Vice-Chancellor's Message

The last two decades have seen a remarkable growth in higher education in India and across the globe. The move towards inter-disciplinary studies and interactive learning have opened up several options as well as created multiple challenges. India is at a juncture where a huge population of young crowd is opting for higher education. With the tremendous growth of privatization of education in India, the major focus is on creating a platform for quality in knowledge enhancement and bridging the gap between academia and industry.

A strong believer and practitioner of the dictum "Knowledge is Power", REVA University has been on the path of delivering quality education by developing the young human resources on the foundation of ethical and moral values, while boosting their leadership qualities, research culture and innovative skills. Built on a sprawling 45 acres of green campus, this 'temple of learning' has excellent and state-of-the-art infrastructure facilities conducive to higher teaching-learning environment and research. The main objective of the University is to provide higher education of global standards and hence, all the programs are designed to meet international standards. Highly experienced and qualified faculty members, continuously engaged in the maintenance and enhancement of student-centric learning environment through innovative pedagogy, form the backbone of the University.

All the programs offered by REVA University follow the Choice Based Credit System (CBCS) with Outcome Based Approach. The flexibility in the curriculum has been designed with industry-specific goals in mind and the educator enjoys complete freedom to appropriate the syllabus by incorporating the latest knowledge and stimulating the creative minds of the students. Bench marked with the course of studies of various institutions of repute, our curriculum is extremely contemporary and is a culmination of efforts of great think-tanks - a large number of faculty members, experts from industries and research level organizations. The evaluation mechanism employs continuous assessment with grade point averages. We believe sincerely that it will meet the aspirations of all stakeholders – students, parents and the employers of the graduates and postgraduates of REVA University.

At REVA University, research, consultancy and innovation are regarded as our pillars of success. Most of the faculty members of the University are involved in research by attracting funded projects from various research level organizations like DST, VGST, DBT, DRDO, AICTE and industries. The outcome of the research is passed on to students through live projects from industries. The entrepreneurial zeal of the students is encouraged and nurtured through EDPs and EACs.

REVA University has entered into collaboration with many prominent industries to bridge the gap between industry and University. Regular visits to industries and mandatory internship with industries have helped our students. REVA University has entered into collaboration with many prominent industries to bridge the gap between industry and University. Regular visits to industries and mandatory internship with industries have helped our students become skilled with relevant to industry requirements. Structured training programs on soft-skills and preparatory training for competitive exams are offered here to make students more employable. 100% placement of eligible students speaks the effectiveness of these programs. The entrepreneurship development activities and establishment of "Technology Incubation Centers" in the University extend full support to the budding entrepreneurs to nurture their ideas and establish an enterprise.

With firm faith in the saying, "Intelligence plus character –that is the goal of education" (Martin Luther King, Jr.), I strongly believe REVA University is marching ahead in the right direction, providing a holistic education to the future generation and playing a positive role in nation building. We reiterate our endeavor to provide premium quality education accessible to all and an environment for the growth of over-all personality development leading to generating "GLOBAL PROFESSIONALS".

Welcome to the portals of REVA University!

Dr. S. Y. Kulkarni Vice-Chancellor, REVA University

Director's Message

It is my pleasure to welcome you to the PG Studies under the School of Mechanical Engineering. M. Tech. in Machine Design—a postgraduate program is designed to create motivated, innovative, creative and thinking graduates to fill the roles of Machine Designers who can conceptualize, design, analyze and develop machines to meet the modern day requirements.

Students completing M. Tech. in Machine Design program will have ample opportunities in premier research organizations like DRDO, ISRO, HAL, NAL and other CSIR institutions. Many OEM's, MNCs and private

companies like SAFRAN, ALTAIR, GE, BOEING, AIRBUS, TATA MOTORS etc., are looking for the dynamic post-graduate candidates specialized in design aspects with CAE based software packages.

This handbook presents the M.Tech. Curriculum for Machine Design Program. The program is of 2 years duration and spilt into 4 semesters. The student admitting to this program has to earn 96 credits spread across four semesters to obtain the M.Tech degree.

The curriculum caters to and has relevance to local, regional, national, global developmental needs. Maximum number of courses are integrated with cross cutting issues with relevant to professional ethics, gender, human values, environment and sustainability.

The important features of M.Tech. in Machine Design are as follows:

- 1. Choice Based Course Selection (CBCS system).
- 2. Curriculum framed and taught by senior most faculty members.
- 3. All theory subjects integrated with practical component.
- 4. Long term internship.
- 5. Opportunity to pursue MOOC course as per interest.
- 6. Research based academic projects.

I am sure that students choosing M.Tech. (Machine Design) will benefit a lot from the industry based curriculum, teaching and learning environment, vast infrastructure, teacher's involvement and guidance.

I wish all PG students a pleasant and exploring stay in REVA University and grand success in their career.

Dr. K. S. Narayanaswamy Director-School of Mechanical Engineering

CONTENTS

Sl. No.	Particulars			
1	Message from the Honorable Chancellor	2		
		2		
2	Message from the Vice- Chancellor	3		
3	Preface from the Director	5		
4	Rukmini Educational Charitable Trust	7		
5	About REVA University	8		
6	About School of Mechanical Engineering			
	- Vision	13		
	- Mission			
	- Advisory Board			
7	M.Tech. in Machine Design Program	16		
	Program Overview			
8	Program Educational Objectives	17		
9	Program Outcomes	17		
10	Program Specific Outcomes	18		
11	M.Tech in Machine Design Program	19		
	Scheme of Instructions			
12	Detailed Syllabus			
	o Prerequisites			
	 Course Objective 			
	 Course Outcomes 	23		
	o Course Content (Unit-1,2,3,4)	23		
	o Text books			
	o Reference books			
	Mapping of COs and POs			
13	Career Development and Placement	86		

RUKMINI EDUCATIONAL CHARITABLE TRUST

It was the dream of late Smt. Rukmini Shyama Raju to impart education to millions of underprivileged children as she knew the importance of education in the contemporary society. The dream of Smt. Rukmini Shyama Raju came true with the establishment of Rukmini Educational Charitable Trust (RECT), in the year 2002. Rukmini Educational Charitable Trust (RECT) is a Public Charitable Trust, set up in 2002 with the objective of promoting, establishing and conducting academic activities in the fields of Arts, Architecture, Commerce, Education, Engineering, Environmental Science, Legal Studies, Management and Science & Technology, among others. In furtherance of these objectives, the Trust has set up the REVA Group of Educational Institutions comprising of REVA Institute of Technology & Management (RITM), REVA Institute of Science and Management (RISM), REVA Institute of Management Studies (RIMS), REVA Institute of Education (RIE), REVA First Grade College (RFGC), REVA Independent PU College at Kattigenahalli, Ganganagar and Sanjaynagar and now REVA University. Through these institutions, the Trust seeks to fulfill its vision of providing world class education and create abundant opportunities for the youth of this nation to excel in the areas of Arts, Architecture, Commerce, Education, Engineering, Environmental Science, Legal Studies, Management and Science & Technology.

Every great human enterprise is powered by the vision of one or more extraordinary individuals and is sustained by the people who derive their motivation from the founders. The Chairman of the Trust is Dr. P. Shyama Raju, a developer and builder of repute, a captain of the industry in his own right and the Chairman and Managing Director of the DivyaSree Group of companies. The idea of creating these top notched educational institutions was born of the philanthropic instincts of Dr. P. Shyama Raju to do public good, quite in keeping with his support to other socially relevant charities such as maintaining the Richmond road park, building and donating a police station, gifting assets to organizations providing accident and trauma care, to name a few.

The Rukmini Educational Charitable Trust drives with the main aim to help students who are in pursuit of quality education for life. REVA is today a family of ten institutions providing education from PU to Post Graduation and Research leading to PhD degrees. REVA has well qualified experienced teaching faculty of whom majority are doctorates. The faculty is supported by committed administrative and technical staff. Over 15,000 students study various courses across REVA's three campuses equipped with exemplary state-of-the-art infrastructure and conducive environment for the knowledge driven community.

ABOUT REVA UNIVERSITY

REVA University has been established under the REVA University Act, 2012 of Government of Karnataka and notified in Karnataka State Gazette dated 7thFebruary, 2013. The University is empowered by UGC to award degrees any branch of knowledge under Sec.22 of the UGC Act. The University is a Member of Association of Indian Universities, New Delhi. The main objective of the University is to prepare students with knowledge, wisdom and patriotism to face the global challenges and become the top leaders of the country and the globe in different fields.

REVA University located in between Kempegowda International Airport and Bangalore city, has a sprawling green campus spread over 45 acres of land and equipped with state-of-the-art infrastructure that provide conducive environment for higher learning and research. The REVA campus has well equipped laboratories, custom-built teaching facilities, fully air-conditioned library and central computer centre, the well planned sports facility with cricket ground, running track & variety of indoor and outdoor sports activities, facilities for cultural programs. The unique feature of REVA campus is the largest residential facility for students, faculty members and supportive staff.

The University is presently offering 23 Post Graduate Degree programs, 20 Degree and PG Degree programs in various branches of studies and has 12000+ students studying in various branches of knowledge at graduate and post graduate level and 431 Scholars pursuing research leading to PhD in 21 disciplines. It has 900+ well qualified, experienced and committed faculty members of whom majority are doctorates in their respective areas and most of them are guiding students pursuing research leading to PhD.

The programs being offered by the REVA University are well planned and designed after detailed study with emphasis with knowledge assimilation, applications, global job market and their social relevance. Highly qualified, experienced faculty and scholars from reputed universities / institutions, experts from industries and business sectors have contributed in preparing the scheme of instruction and detailed curricula for this program. Greater emphasis on practice in respective areas and skill development to suit to respective job environment has been given while designing the curricula. The Choice Based Credit System and Continuous Assessment Graded Pattern (CBCS – CAGP) of education has been introduced in all programs to facilitate students to opt for subjects of their choice in addition to the core

subjects of the study and prepare them with needed skills. The system also allows students to move forward under the fast track for those who have the capabilities to surpass others.

These programs are taught by well experienced qualified faculty supported by the experts from industries, business sectors and such other organizations. REVA University has also initiated many supportive measures such as bridge courses, special coaching, remedial classes, etc., for slow learners so as to give them the needed input and build in them confidence and courage to move forward and accomplish success in their career. The University has also entered into MOUs with many industries, business firms and other institutions seeking their help in imparting quality education through practice, internship and also assisting students' placements.

REVA University recognizing the fact that research, development and innovation are the important functions of any university has established an independent Research and Innovation division headed by a senior professor as Dean of Research and Innovation. This division facilitates all faculty members and research scholars to undertake innovative research projects in engineering, science & technology and other areas of study. The interdisciplinary-multidisciplinary research is given the top most priority. The division continuously liaisons between various funding agencies, R&D Institutions, Industries and faculty members of REVA University to facilitate undertaking innovative projects. It encourages student research projects by forming different research groups under the guidance of senior faculty members. Some of the core areas of research wherein our young faculty members are working include Data Mining, Cloud Computing, Image Processing, Network Security, VLSI and Embedded Systems, Wireless Censor Networks, Computer Networks, IOT, MEMS, Nano- Electronics, Wireless Communications, Bio-fuels, Nano-technology for coatings, Composites, Vibration Energies, Electric Vehicles, Multilevel Inverter Application, Battery Management System, LED Lightings, Renewable Energy Sources and Active Filter, Innovative Concrete Reinforcement, Electro Chemical Synthesis, Energy Conversion Devices, Nano-structural Materials, Photo-electrochemical Hydrogen generation, Pesticide Residue Analysis, Nano materials, Photonics, Nano Tribology, Fuel Mechanics, Operation Research, Graph theory, Strategic Leadership and Innovative Entrepreneurship, Functional Development Management, Resource Management and Sustainable Development, Cyber Security, General Studies, Feminism, Computer Assisted Language Teaching, Culture Studies etc.

The REVA University has also given utmost importance to develop the much required skills through variety of training programs, industrial practice, case studies and such other activities that induce the said skills among all students. A full-fledged Career Development and Placement (CDC) department with world class infrastructure, headed by a dynamic experienced Professor & Dean, and supported by well experienced Trainers, Counselors and Placement Officers.

The University also has University-Industry Interaction and Skill Development Centre headed by a Senior Professor & Director facilitating skill related training to REVA students and other unemployed students. The University has been recognized as a Centre of Skill Development and Training by NSDC (National Skill Development Corporation) under Pradhan Mantri Kaushal Vikas Yojana. The Centre conducts several add-on courses in challenging areas of development. It is always active in facilitating student's variety of Skill Development Training programs.

The University has collaborations with Industries, universities abroad, research institutions, corporate training organizations, and Government agencies such as Florida International University, Okalahoma State University, Western Connecticut University, University of Alabama, Huntsville, Oracle India Ltd, Texas Instruments, Nokia University Relations, EMC², VMware, SAP, Apollo etc, to facilitate student exchange and teacher–scholar exchange programs and conduct training programs. These collaborations with foreign universities also facilitates students to study some of the programs partly in REVA University and partly in foreign university, viz, M.S in Computer Science one year in REVA University and the next year in the University of Alabama, Huntsville, USA.

The University has also given greater importance to quality in education, research, administration and all activities of the university. Therefore, it has established an independent Internal Quality division headed by a senior professor as Dean of Internal Quality. The division works on planning, designing and developing different quality tools, implementing them and monitoring the implementation of these quality tools. It concentrates on training entire faculty to adopt the new tools and implement their use. The division further works on introducing various examination and administrative reforms.

To motivate the youth and transform them to become innovative entrepreneurs, successful leaders of tomorrow and committed citizens of the country, REVA organizes interaction between students and successful industrialists, entrepreneurs, scientists and such others from time to time. As a part of this exercise great personalities such as Bharat Ratna Prof. C. N. R. Rao, a renowned Scientist, Dr. N R Narayana Murthy, Founder and Chairman and Mentor of Infosys, Dr. K Kasturirangan, Former Chairman ISRO, Member of Planning Commission, Government of India, Dr. Balaram, Former Director I.I.Sc., and noted Scientist, Dr. V S Ramamurthy, Former Secretary, DST, Government of India, Dr. V K Aatre, noted Scientist and former head of the DRDO and Scientific Advisor to the Ministry of Defence Dr. Sathish Reddy, Scientific Advisor, Ministry of Defence, New Delhi and many others have accepted our invitation and blessed our students and faculty members by their inspiring addresses and interaction.

As a part of our effort in motivating and inspiring youth of today, REVA University also has instituted awards and prizes to recognize the services of teachers, researchers, scientists, entrepreneurs, social workers and such others who have contributed richly for the development of the society and progress of the country. One of such award instituted by REVA University is 'Life Time Achievement Award' to be awarded to successful personalities who have made mark in their field of work. This award is presented on occasion of the "Founders' Day Celebration" of REVA University on 6th January of every year in presence of dignitaries, faculty members and students gathering. The first "REVA Life Time Achievement Award" for the year 2015 has been awarded to Shri. Kiran Kumar, Chairman ISRO, followed by Shri. Shekhar Gupta, renowned Journalist for the year 2016, Dr K J Yesudas, renowned play back singer for the year 2017. REVA also introduced "REVA Award of Excellence" in the year 2017 and the first Awardee of this prestigious award is Shri Ramesh Aravind, Actor, Producer, Director, Screen Writer and Speaker.

REVA organizes various cultural programs to promote culture, tradition, ethical and moral values to our students. During such cultural events the students are given opportunities to unfold their hidden talents and motivate them to contribute innovative ideas for the progress of the society. One of such cultural events is REVOTSAVA conducted every year. The event not only gives opportunities to students of REVA but also students of other Universities and Colleges. During three days of this mega event students participate in debates, Quizzes, Group discussion, Seminars, exhibitions and variety of cultural events. Another important

event is Shubha Vidaaya, - Graduation Day for the final year students of all the programs, wherein, the outgoing students are felicitated and are addressed by eminent personalities to take their future career in a right spirit, to be the good citizens and dedicate themselves to serve the society and make a mark in their respective spheres of activities. During this occasion, the students who have achieved top ranks and won medals and prizes in academic, cultural and sports activities are also recognized by distributing awards and prizes. The founders have also instituted medals and prizes for sports achievers every year. The physical education department conducts regular yoga classes everyday to students, faculty members, administrative staff and their family members and organizes yoga camps for villagers around. Recognizing the fast growth of the university and its quality in imparting higher education, the BERG (Business Excellence and Research Group), Singapore has awarded BERG Education Award 2015 to REVA University under Private Universities category. The University has also been honored with many more such honors and recognitions.

ABOUT SCHOOL OF MECHANICAL ENGINEERING

Mechanical Engineering is one of the oldest and classical branches of engineering which drives the development and economy of the country. The school of Mechanical Engineering in REVA University has a rich blend of experienced, energetic and dedicated faculty with highest qualification in the specialization of thermal, design, manufacturing and management streams. The school has well-furnished class rooms and well equipped laboratories with modern software tools to meet academic and industry requirements. The research Centre with modern equipment and testing facility is also available to cater research activities in the field of materials and bio-fuels. Extracurricular and co-curricular activities are conducting to develop additional skills, knowledge and confidence through University Industry Interaction Cell and various student clubs and student chapters with the support of industries. Industry persons are invited to give technical talks on latest technologies and students are deputed for internship in industries and universities in India and Abroad. The school is having with reputed industries and universities in India and abroad for internship, research and twinning program or higher studies which will give more exposure of our students to outside world. Many students have done internship in reputed institutions like IISc, ISRO, DRDO, HAL, Rail Wheel factory, Volvo and many more. Every semester school is organizing industry visits to reputed organizations to learn various aspects of industry. Student clubs and chapters are highly active in the school which are MARS, ISHRAE Student Chapter, Foundry Man Society, Fluid Power Society, SAE club and Aryan Racing Team through which cultural events, training programs, invited talks, industry visits and placement activities are conducting. School is encouraging the students to participate in national and international level competitions like Solar car design, Electric vehicle design, Formula car design, ATV design, Go-Cart design and quiz competition through this student can learn additional skills like design, team management, time management and financial aspects. Additional training programs are conducting in the field of automobile, robotics, and manufacturing to impart skills with industry relevant. The School is organizing workshops, seminars, conferences and competitions in national and international level for the students, faculty and research scholars to enhance their skills and research trends. The school offers B.Tech in Mechanical Engineering, M.Tech. in Machine design and PhD program. The curriculum of both UG and PG is designed to meet the needs of the society and industry for present and future.

It also meets the requirements of higher studies in India and abroad and also for the requirement of competitive exams. In overall, school will support and make our students more disciplined, good human being and more responsible persons of the society.

Vision

"Aspires to be recognized globally for outstanding value based education and research leading to well-qualified mechanical engineers, who are innovative, entrepreneurial, successful in their career and committed to the development of the country."

Mission

- 1. To impart quality education to the students and enhance their skills to make them globally competitive mechanical engineers.
- 2. To promote multidisciplinary study and cutting edge research and expand the frontiers of mechanical engineers profession.
- 3. To create state-of-art facilities with advanced technology for providing students and faculty with opportunities for innovation, application and dissemination of knowledge.
- 4. To prepare for critical uncertainties ahead for mechanical engineering and to face the challenges through clean, green and healthy solution.
- 5. To collaborate with industries, institutions and such other agencies nationally and internationally to undertake exchange programs, research, consultancy and to facilitate students and faculty with greater opportunities for individual and societal growth.

ADVISORY BOARD

Sl No.	Particulars of Members
1	Dr. N. V. Ravikumar
	Associate Professor,
	Department of Metallurgy & Materials Engineering, IIT Madras
2	Mr. K. N. Narsimha Murthy
	Chairman, Fluid Air Systems, Bangalore.
	Hon. Treasurer, Karnataka Small Scale Industries Association (KSSIA)
3	Prof. M. V. Krishna Murthy
	Former Professor Dept. Mechanical Engineering IIT Chennai, Madras,
	Former Director, VIT, Vellore
4	Mr. Praveen Kumar Jinde
	Scientist, NAL, Bangalore
5	Dr. K Ramachandra
	Former Director, GTRE, Bangalore
	CEO, NP-MICAV's National Design Research Forum
	The Institute of Engineers, Bangalore.
6	Prof. E. Abhilash
	Dept. Mechanical Engineering, King Khalid University Abha,
	Kingdom of Saudi Arabia.

"When a young man leaves the institution after a course of training, he should be clean in speech and habit with a correct sense of patriotism, loyalty to the country, aptitude for initiative, love for self-help, appreciation of the value of time, respect for law and order, and a knowledge of the value of the right thinking and right living, sufficiently well-equipped to fall into a position in some business or other and be able to support himself."

Sir. M. Visvesvaraya

M.Tech. in Machine Design

Program Overview

Mechanical Engineering discipline applies the principles of physics and materials science for design, analysis, prototyping, manufacturing, and maintenance of mechanical systems. Mechanical Engineers specialize in subject areas like Machine Design, Manufacturing and Energy Conversion (Thermal power) depending on individual's interest through postgraduate education and research routes.

The School of Mechanical Engineering at REVA UNIVERSITY offers M. Tech., in Machine Design—a postgraduate program to create motivated, innovative, creative and thinking graduates to fill the roles of Machine Designers who can conceptualize, design, analyze and develop machines to meet the modern day requirements.

The first intellectual and creative activity in development of a new equipment is product or industrial design and the subsequent activity is the Machine Design. Machine design is the process of engineering design. A machine is made up of mechanisms that work together to satisfy the requirements of what the machine needs to accomplish. Machine design takes into account kinematics and kinetics, which deal with motion and the forces on an object in motion. Machine design is applied through a specific process including determining what the machine needs to do, benchmarking and defining goals and requirements, brainstorming, evaluating and selecting from the different options, creating an in-depth design, creating and testing a prototype, and finally manufacturing the machine.

In summary, machine design is about recognizing the need, arriving at specifications, synthesis, analysis, prototyping and evaluation and producing drawings for manufacturing.

Mechanical engineers work in the domains of automobile engineering, aerospace engineering, machine tools, Internal combustion engines, cement industry, steel industries, power sector, hydraulics, manufacturing plants, drilling and mining industry, petroleum, general engineering, biotechnology and many more. Nowadays they are also increasingly needed in the environmental and bio-medical fields. There are exciting times ahead for mechanical engineers as transport technologies like hyper loop, electric vehicles, flying cars, drone technologies, intelligent system like robots and additive manufacturing including 3D printing are gaining importance. These mechanical engineering domains need machine

designers to create machines that not only meet the functional, aesthetic, ergonomic requirements but must also be economical to operate and maintain, robust, sustainable and intelligent.

In this context, The School of Mechanical Engineering at REVA UNIVERSITY would like to add to the growing human resources needs of industry as machine designers through its M. Tech. program in Machine Design.

Program Educational Objectives (PEOs)

The aim of the program is to produce postgraduates with advanced knowledge and understanding of contemporary machine design; higher order critical, analytical, problem solving and transferable skills; ability to think rigorously and independently to meet higher level expectations of industry, academics, research establishments or take up entrepreneurial route.

The **Program Educational Objectives** are to prepare the students to:

- 1. Be machine designers to design mechanical equipment, machines and mechanical systems as per the desired customer specifications.
- 2. Pursue doctoral research degree to work in colleges, universities as professors or as scientists in research establishments.
- 3. Act as administrators in public, private and government organizations or business administrator or entrepreneur with further training.

Program Outcomes (POs)

After undergoing this program, a student will be able to:

PO1: Demonstrate in-depth knowledge of Machine Design, including wider and global perspective, with an ability to discriminate, evaluate, analyze and synthesize existing and new knowledge on design concepts, and integration of the same for enhancement of knowledge.

PO2: Analyze complex design problems critically, apply independent judgment for synthesizing information to make intellectual and/or creative advances for conducting research in a wider theoretical, practical and policy context.

PO3: Think laterally and originally, conceptualize and solve mechanical design problems, evaluate a wide range of potential solutions for those problems and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of expertise.

PO4: Extract information pertinent to unfamiliar problems through literature survey and experiments, apply appropriate research methodologies, techniques and tools, design, conduct experiments, analyze and interpret data, demonstrate higher order skill and view things in a broader perspective, contribute individually/in group(s) to the development of scientific/technological knowledge in the domains of mechanical design engineering.

PO5: Create, select, learn and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, to complex mechanical design engineering activities with an understanding of the limitations.

PO6: Possess knowledge and understanding of group dynamics, recognize opportunities and contribute positively to **collaborative-multidisciplinary scientific research**, demonstrate a capacity for self-management and teamwork, decision-making based on open-mindedness, objectivity and rational analysis in order to achieve common goals and further the learning of themselves as well as others.

PO7: Demonstrate knowledge and understanding of engineering and management principles and apply the same to one's own work, as a **member and leader in a team**, manage projects efficiently in mechanical design and multidisciplinary environments after consideration of economical and financial factors.

PO8: Communicate with the engineering community, and with society at large, regarding complex mechanical design engineering activities confidently and effectively, such as, being able to comprehend and write effective reports and design documentation by adhering to appropriate standards, make effective presentations, and give and receive clear instructions.

PO9: Recognize the need for, and have the preparation and ability to engage in **life-long learning** independently, with a high level of enthusiasm and commitment to improve knowledge and competence continuously.

PO10: Acquire professional and intellectual integrity, professional **code of conduct**, **ethics of research** and scholarship, consideration of the impact of research outcomes on professional practices and an understanding of responsibility to contribute to the community for sustainable development of society.

PO11: Observe and examine critically the outcomes of one's actions and make corrective measures subsequently, and **learn from mistakes** without depending on external feedback (**SELF learning**).

PROGRAM SPECIFIC OUTCOMES (PSOs)

After successful completion of the programme, the post graduates shall be able to

PSO 1: Apply Machine Design engineering knowledge, skills and competency in Design and analysis of systems related to Automotive, Mechanical, Aerospace Engineering and allied areas to obtain realistic outcomes.

PSO 2: Identify, formulate, analyze and solve problems in mechanical design engineering and allied domains.

PSO 3: Conduct investigations in the areas of numerical analysis, vibration analysis, material failure, mechanism synthesis to provide optimal and sustainable solutions.

M.Tech. (Machine Design) Program Scheme of Instruction

(Effective from the Academic Year 2018-19)

SEMESTER-I

	Course Code Title of the course		Type s of	Cred	it Patte	ern			
SI No			cours e (HC/ SC)	L	Т	P	Credit Value	Total Hour s	
FII	RST SEMESTE	₹							
1	M18MD1010	Numerical Methods	НС	3	0	1	4	5	
2	M18MD1020	Geometric Modeling and Prototype		3	0	1	4	5	
3	M18MD1030	Synthesis and Analysis of Mechanisms	НС	3	0	1	4	5	
4	M18MD1040	Advanced Mechanics of Solids	НС	3	0	1	4	5	
5	M18MD1050	Finite Element Procedure – I	FC	3	0	1	4	5	
6	M18MD1061	Design and Analysis of Engineering components	SC	3	0	1	4	5	
	M18MD1062	Design of Experiments				1	'		
	M18MD1063	Advanced Materials							
_	M18MD1071	Theory of Plates and Shells							
7	M18MD1072	Design for Manufacturing and Assembly	SC	3	1	0	4	5	
	M18MD1073	Vehicle Dynamics							
			Total	21	1	6	28	35	
Total Credits for the First Semester							28	35	

• **Note:** Courses contain relevant lab component in each unit in order to give Practical Exposure to students.

SEMESTER-II

SI		Types of		Cree	dit Patt	ern		TD 4.1	
N o	Course Code	Title of the course	course (HC/ SC)	L	Т	P	Credit Value	Total Hours	
1	M18MD2010	Experimental Stress Analysis	НС	3	0	1	4	5	
2	M18MD2020	Finite Element procedure – II	НС	3	0	1	4	5	
3	M18MD2030	Advanced Theory of Vibration HC		3	0	1	4	5	
4	M18MD2040	2040 Tribology and Bearing Design		3	1	0	4	5	
5	M18MD2050	Mechanics of Composite Materials	НС	3	0	1	4	5	
	M18MD2061	Machine Tool Design							
6	M18MD2062	Mechatronics Product Design	ics Product SC	4	0	0	4	4	
	M18MD2063	Rotor Dynamics							
7	M18MD2071	Advanced Machine Design							
,	M18MD2072	Robotics and its Application	SC	4	0	0	4	4	
	M18MD2073	Optimization in Engineering Design							
			Total	23	1	4	28	33	
		Total Credi	ts for the	Seco	nd Sem	ester	28	33	

SEMESTER-III

SI N	Course Code	Title of the course	Types of course Credit			Credit	Total Hours	
0			(HC/SC)	L	T	P	Value	Hours
1	M18MD3010	Fatigue and Fracture Mechanics	НС	3	1	0	4	5
2	M18MD3020	Open Elective (Modern Automotive System)	OE	3	1	0	4	5
3.	M18MD3030	Internship with Report	RULO	0	0	6	6	12
4	M18MD3040	Project Phase-I	НС	0	0	4	4	8
5	M18MD3050	Yoga/ Sports/ Theatre/ Music / Dance	RULO	0	0	2	2	2
			Total	6	2	12	20	32
	Total Credits for the Third Semester 20 32							32

SEMESTER-IV

1	1 M18MD4010 Project/Dissertation/Seminar HC		0	0	16	16	-	
2	M18MD4020	MOOC/ SWAYAM/ On line program	RULO	4	0	0	4	-
			Total	4	0	16	20	-
	Total Credits for the Fourth Semester							
	Total Credits of all Four Semesters						96	

Note: 1) Soft Core (SC): Student shall opt for one SC course of his/her choice from the groups framed

2) Open Elective (OE): These are the courses that are offered for the students of other Schools. The students of the School of Mechanical Engineering have to choose ONE Open Elective offered by other schools.

Modern Automotive System (M18MD3020) is the open elective course which is being offered by School of Mechanical Engineering to the students of other schools.

Guide lines for Internship/Project Work:

- **1. Internship:** should be carried out in a reputed /Tier-1/R & D organization, preferably, internship should be with stipend. The internship should be approved by the REVA University authorities before completion of 3rd semester and the students should obtain the permission for the same by producing the necessary details of company, selection process, and the offer letter issued by the company. At the end of the Internship, detailed report must be submitted.
- **2. Project work:** Phase-1 comprises of literature survey, review paper writing, and problem formulation, identification of tools and techniques, and methodology for the project. Phase -2, in

4th semester should have a visible outcome in the form of publication in a reputed International Conference/Journal or copyright or patent filing.

Semester-wise Summary of Credit Distribution

Semesters	No. of Credits
First Semester	28
Second Semester	28
Third Semester	20
Fourth Semester	20
Total Credits	96

Distribution of Credits Based on Type of Courses

Semester	HC	FC	SC	OE	RULO	TOTAL
I	16	04	08	-	-	28
II	20		08	-	-	28
III	08			04	08	20
IV	16			-	04	20
Total	60	04	16	04	12	96

HC=Hard Core; SC=Soft Core; OE=Open Elective; RULO=REVA Unique Learning Offerings

Distribution of Credits Based on L: T: P

Semester	L	T	P
I	21	1	6
II	23	1	4
III	6	2	12
IV	4	0	16
Total	54	4	38

M.Tech. (Machine Design) Program DETAILED SYLLABUS

FIRST SEMESTER

Course Code	Cour	se Title		(Course L T Type				С	Hr/wk
M18MD1010	Numeric	al Methods	S		HC	3	0	1	4	5
				Inter	nal Assessm	ent		S	emes	ster End
Prerequisite: E	ngg. Mathemati	es-I, II, III	& IV						Ex	kam
					50 Mark	S			50 N	Marks
Course	1. To enhanc	the know	vledge	of nu	ımerical me	ethoc	ds, op	otimi	zatio	n, partial
Objectives	differential	equations,	hyperbo	ola an	d curve fitti	ng.				
	2. These cond	epts occur	frequer	ntly in	their subject	ets lil	ke fin	ite el	emer	nt method
	and other d	esign appli	cation c	oriente	ed subjects.					
Course	After the comp	letion of the	e cours	e the s	student will	be at	ole to:			
Outcomes	1.				mple mathe	emat	ical n	node	ls of	physical
				licatio						
	2. Determ enginee		optimiz	e en	gineering	prob	lems	in	Scie	nce and
	3. Differentiate and integrate a function for a given set of tabulated data for engineering application.								ated data,	
	6 6 11							or given		
				licatio						
Unit:1	Introducti	on to Num	erical l	Metho	ods &Nume	rica	l		12 I	Jours
Omt.1	Integration						12 Hours			

Introduction to numerical methods applied to engineering problems: Examples, solving sets of equations, Matrix notation, Determinants and inversion, Iterative methods, Relaxation methods, system of non-linear equations, computer programs.

Numerical integration: Newton-Cotes integration formulas, Simpson's rules, Gaussian quadrature. Adaptive integration.

Lab Component: Solving linear and non-linear equations using MATLAB commands

•	 	
Unit:2	Optimization	11 Hours

Optimization: One dimensional unconstrained optimization, multidimensional unconstrained Optimization —direct methods and gradient search methods, constrained optimization Boundary value problems and characteristic value problems: Shooting method — Solution through a set of equations — Derivative boundary conditions — Rayleigh — Ritz method — Characteristic value problems.

Unit:3 Numerical solutions of partial differential equations 11 Hours

Numerical solutions of partial differential equations: Laplace's equations, Representations as a difference equation, Iterative methods for Laplace's equations, Poisson equation, Examples, Derivative boundary conditions, Irregular and non-rectangular grids, Matrix patterns, Sparseness, ADI method, Parabolic partial differential equations: Explicit method, Crank-Nickelson method, Derivative boundary condition, Stability and convergence criteria.

Lab Component: Solving partial and ordinary differential equations using MATLAB

commands(PDE23 & ODE45)

Unit:4 Hyperbolic partial differential equations & Curve fitting

11 Hours

Hyperbolic partial differential equations: Solving wave equation by finite differences stability of numerical method, Method of characteristics-wave equation in two space dimensions-computer programs.

Curve fitting and approximation of functions: Least square approximation fitting of nonlinear curves by least squares, regression analysis, multiple linear regression, nonlinear regression - computer programs

Lab Component: Exercises on curve fitting using MATLAB commands

_	8 8
Text Books:	1. Steven C. Chapra, Raymond P.Canale, (2000), "Numerical Methods for
	Engineers", Tata Mc-Graw Hill.
	2. Curtis F.Gerald, Partick.O.Wheatly, (1989), "Applied numerical analysis"
	Addison-wesley.
	3. Douglas J.Faires, Riched Burden (1998) "Numerical methods" Brooks/cole
	publishing company.
References:	1. Ward Cheney & David Kincaid (1999)"Numerical mathematics and
	computing" Fourth Edition Brooks / Cole publishing Company.
	2. Riley K.F.M.P.Hobson & Bence S.J, (1999) "Mathematical methods for
	physics and engineering" Cambridge university press.

Mapping of Po's and Co's

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	РО	PO	PO
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	9	10	11
									(i)	(j)	(k)
CO ₁											
CO ₂	√					$\sqrt{}$					
CO ₃	V										
CO ₄	V										

Course Code	Course Title	Course Type	L	T	P	C	Hrs/wk
M18MD1020	Geometric Modelling and Prototyping	НС	4	0	1	5	5
Prerequisite	e: Engg. Drawing, Computer Aided	Internal A	ssessi	ment	S		ster End
_	ne Drawing, CAD/CAM/CIM	70.7					xam
			Marks				Marks
Course Objectives	To make to students to understal latest development in Digital dra					_	_
Objectives	 To make students to understand modeling. To enable the students to understand. 	the conceptand GD&T	ot and	applica	ation icatio	of g	
	4. To teach reverse engineering and	i Rapid pro	totypi	ng tecn	nıqu	es.	
Course Outcomes	*						
	3. Draft a model with knowledge of O	GD& T and	RP te	chnique	es		
	4. Understand and learn advantage o	f using digi	tal to	ols for o	desig	n.	
Unit:1	Introduction to CAD, CAM	, CIM and	CAP	P		12 H	Iours
Concept of Ca	AD /CAM, desirable features of CA	D package	, drav	wing fe	ature	s in	CAD -
Scaling, rotati	on, translation, editing, dimensioning	ng, labellii	ng, Z	Zoom,	pan,	red	raw and
=	re frame modelling, surface modelling			_			
CAD packages benefits of CIN	s. CIM as a concept and a technology. M.	gy, CASA/	Sme	model	of C	IM,	CIM II,
Unit:2	Engineering Drawing Funda	mentals &	GD8	z T		11 H	lours
of solids, dime	ineering drawing orthographic project insigning standards, fundamental diments T and its applications.	-		-			_
Unit:3	Geometric modelling 11 Hours						
Geometric mo	odelling - Types and Mathematical Rep	presentation	s of S	Surfaces	s: Su	rface	models,
	s, surface representation, parametric ces, simple problems.	representa	tion (of anal	ytic	surf	aces and
Unit:4	Introduction to Rapid prototype, Rapid Prototype Te		ngine	ering &	Z	11 H	lours

conceptual des systems, Stere machine detai	Need for time compression in product development, Product development – sign – development – detail design – prototype – tooling. Classification of RP too lithography systems – Principle – process parameters – process details – ls, Applications. Concepts of reverse Engineering, its application with case of 3D printer. 1. Ibrahim Zeid., R.Sivasubramanian,.(2005), "CAD/CAM: THEORY & PRACTICE". Second Edition, special Indian edition., McGraw Hill Publication. 2. Rafiq Noorani.,(2005)"Rapid Prototyping: principles and applications", kindle edition. 3. Robert W.Messler Jr.,(2013) "Mechanisms, structures, systems & materials". McGraw Hill Publication. 4.Chee Kai Chua, Kah Fai Leong, & Chu Sing,.Lim., "Rapid Prototyping: Principles and Applications". 3rd Edition. world Scientific publishing Co.Pte.Ltd.
References	 P. Radhakrishnan., S. Subramanyan., V. Raju (2008) "CAD/CAM/CIM", Third Edition, New Age International(P) limited, Publisher. D. D. Bedworth., M. R. Henderson., P. M. Wolfe., (1991) "Computer Integrated Design and Manufacturing" McGraw-Hill. M.P.Groover., and E. W. Zimmer., (2003) "CAD/CAM Computer Aided Design and Manufacturing", 1First Edition, Pearson Education. Chua., (2010) "Rapid Prototyping Principles and Applications". 3rd edition, YesDee Publishing Private Limited.

Mapping of Po's and Co's

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO	P
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	10	О
										(j)	11
											(k)
CO_1											
CO ₂	1					1					
CO ₃	V										
CO ₄	1										

Course Code	Course Title	Course Type	L	Т	P	С	Hr
M18MD1030	Synthesis and Analysis of Mechanisms	HC	3	1	4	5	
		Inte	ernal	•	Se	emes	ter
Prerequisite: T	Theory of Machines I and II	Asses	ssmen	t	En	nd Ex	am
		50 N	I arks		50) Ma	rks
Course	1. It aims at finding out degrees of freedom for an	y given m	echar	nism			
Objectives	2. Help to provide the designer concept to control	the positi	on of	any	mecl	nanis	m at
	a particular instant of time.						
	3. It helps in solving the mechanism both analytic	ally and g	raphic	cally			
	4. Teach the Freudenstein's equation and to gives	an idea ab	out tl	ne ma	ınipu	lator	and
	its dynamics						
Course	After successful completion of the course the stud	ent shall t	e abl	e to			
Outcomes	1. Explain the concept of inversion, degrees of t	reedom, v	elocit	ty and	d acc	elera	ıtion
	for any given mechanism.		_				
	2. Generate the motion for a particular expression	n and find	l out t	he d	iffere	ent po	oints
	traced by a mechanism.						
	3. Solve the mechanism problems both analytically and graphically by using different methods like number analysis, dimensional analysis etc.						
	4. Understand and classify dynamics behavior of manipulators.						
	, , , , , , , , , , , , , , , , , , , ,	1					
Unit1:	Introduction and Mechanics of different N	1echanis r	ns		11	Hou	rs

Introduction - Links - Pairs - Chain - Mechanism - Machine structure - Degrees of freedom - Four bar chains - Terminology and definition - Planer, Spherical and Spatial Mechanisms - Grashoff's law - Kutzback criterion - Grubler's criterion for plane mechanism. Inversion of mechanisms - Four bar, single slider crank and double slider crank mechanisms - Simple problems - Instantaneous center - Kennedy's theorem - Velocity and Acceleration of Four bar and single slider crank mechanisms by relative velocity Method

Lab Component: Analyzing the mechanism using Adams

1	J 4 B	<u> </u>	
Unit2:	Velocity , Accelera	ation and Introduction to motion	on generation 12Hours

Position, Velocity and Acceleration analysis, Static force analysis, Inertia forces in machines, Synthesis of Mechanisms: Type, number and dimensional synthesis, Coupler curve Introduction, tasks of Kinematics Synthesis, Graphical synthesis: Motion generation-two and three prescribed motions, Path generation – three prescribed positions, prescribed timings, four positions without prescribed timings, Function Generator: Three prescribed points, Introduction to Analytical synthesis three prescribed positions for motion, path and function generation, circle, point and center-point circles,

Lab Component: Analyzing the mechanism using Adams

TT 1: 0		40.77
Unit 3	Analytical and Graphical Method of motion generation	12 Hours
Freudenstein's	equations for three point function generation, order synthesis, Co	oupler cognate
mechanisms	Graphical Methods: Precision positions Over lay Method. Analyt	cical Methods:
Blotch's Synthe	esis - Freudestien's Method - Coupler curve Synthesis - Cognate 1	inkages - The

Roberts - Cheb	yshev theorem
Lab componen	t: Analyzing the mechanism using Adams
Unit 4:	Manipulators and its dynamics 10 Hours
Manipulators:	Classification, actuation and transmission systems, coordinate systems, coordinate
transformations	-DH notations, inverse and forward kinematics, Manipulator dynamics from
Lagrangian and	Newtonian point of view
Lab componen	t: Simulation of various manipulators using MATLAB
Text Books	1. George N Sandor and Arthur G Erdman, (1988), "Mechanism Design", VOL -
	1, PHI.
	2. George N Sandor and Arthur G Erdman, (1988), "Mechanism Design", VOL -
	2, PHI.
	3. Joseph E Shigley (2005), Theory of Machines & Mechanism Design, Third
	Edition, Oxford Publications.
References	1. Klafter R.D., Cmielewski T.A. and Negin (1994), Robot Engineering Ar
	Integrated Approach, New Delhi, M Prentice Hall.
	2. Deb S.R (1994), Robotics Technology and Flexible Automation, Second
	Edition, Tata McGraw Hill Publishing Co.,Ltd.

Mapping of Po's and Co's

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO_8	PO ₉	PO	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	10	PO ₁₁
										(j)	(j)
CO ₁			V								
CO ₂			$\sqrt{}$								
CO ₃			1								
CO ₄			V								

Course Code	Course Title	Course Type	L	T	C	Hr		
M18MD1040	Advanced Mechanics of Solids	HC	3 0 1 4					
Prerequisite: En	gg. Mathematics, Material Science &			nternal			nester	
_	hanics of Materials.			essme Mark			Exam Marks	
Course Objectives	 To enable the students to unbody and to obtain stress-strain Provide systematic basic known Cubical Dilation, True Stress - Provide systematic basic known Deformation of Metals. To enable the students to unconstraint. 	n compone vledge for T - Strain. wledge Uni lerstand Yi	quilibr nts for Two D iquene	the elimensies The	quat astic ona	ion for complete comp	or elastic conent. lems and Plastic	
Course Outcomes	 After completion of the course the stu Demonstrate the fundamentals Stress and Strain. Formulate Cubical Dilation, problems. Formulate the Uniqueness Metals. Determine the Stress Strain Research 	of equilibrates True Stress Theorem	rium eand Sand P	quatio Strain, Plastic	two	dime	ensional	
Unit:1	Analysis of Stress-Strain					2 Hou	rs	

Analysis of Stress: Stress, Stress at a Point, Equilibrium Equations, Principal Stresses, Mohr's Diagram, Maximum Shear Stress, Boundary Conditions.

Analysis of Strain: Compatibility Equations, Principal Strains, Generalized Hooke's law, Methods of Solution of Elasticity Problems – Plane Stress- Plane Strain Problems.

Lab Component: Determine the stresses and strain of Tensile test specimen of Al, Copper and Brass material.

Unit:2 Cubical Dilation, Two Dimensional Problems 12 Hours

Cubical Dilation, True Stress and Strain: Strain tensor, principal strain, plane strain, spherical and deviator strain, octahedral strain and representative strain, problems

Two Dimensional Problems: Cartesian co-ordinates, Airy's stress functions, Investigation of Airy's Stress function for simple beam problems, Bending of a narrow cantilever beam of rectangular cross section under edge load, pin ended beam under uniform pressure.

Lab Component: Determine the Bending of a narrow cantilever beam of rectangular cross section under edge load

Unit:3 Uniqueness Theorem & Plastic Deformation of Metals. 12 Hours

Uniqueness Theorem: Principle of super position, reciprocal theorem, saint venant principle. **Plastic Deformation of Metals:** Crystalline structure in metals, mechanism of plastic deformation, factors affecting plastic deformation, strain hardening, recovery, recrystallization and grain growth, flow figures or luder's cubes.

Lab Component: Determine the Crystalline structure in metals

Unit:4	Stress Strain Relations and Yield Criteria	09 Hours
--------	--	----------

Stress Strain Relations: Introduction, types of materials, empirical equations, theories of plastic flow, experimental verification of St. Venant's theory of plastic flow, the concept of plastic potential, the maximum work hypothesis, mechanical work for deforming a plastic substance

Yield Criteria: Introduction, yield or plasticity conditions, Von Mises and Tresca criteria, Geometrical representation, yield surface, yield locus (two dimensional stress space), experimental evidence for yield criteria, energy required to change the shape with basic principle problems

Lab Component: Determine the concept of plastic potential

1	1 1 1
Text Books	1. L. S. Srinath (2008), Mechanics of solids, ,Tata McGraw Hill, 3rd
	Edition
	2. S. P. Timoshenko and J. N Gordier(1972) Theory of Elasticity,
	Mc.Graw Hill International, 3rd edition
	3. Chakraborty (2000), Theory of Plasticity, 3rd Edition Elsevier.
	4. 'Engineering Plasticity',(2000) W. Johnson and P. B. Mellor D Van
	N.O Strand Co. Ltd .
References	1. Dr. Sadhu Singh (1988), Theory of Elasticity, 5 th Edition, Khanna
	Publications.
	2. Seetharamu & Govindaraju (2005), Applied Elasticity, Interline
	Publishing, New-Delhi.
	3. C.T. WANG, (1953), Applied Elasticity, McGraw Hill Book Co.

Mapping of Po's and Co's

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO_8	PO ₉	PO_{10}	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	PO_{11}
											(k)
CO ₁	V										
CO ₂	V										
CO ₃	V						$\sqrt{}$				
CO ₄	V										

Course Code	Course Title	Course	L T P			С	Hr			
M18MD1050	Finite Element Procedures-1	Type FC	3	0	1	4	5			
	Prerequisite: Mechanics of Materials/Engg Mathematics						Semester End Exam			
	50 Marks 50 Marks									
Course Objectives	 To enable the students to understand the mathematical and physical principles underlying the Finite Element Method (FEM) as applied to solid mechanics and heat transfer problems. To provide systematic and comprehensive knowledge of basics of Finite element method as an analysis tool. To teach the students the characteristics of various elements and selection of suitable elements for the problems being solved. To make the students derive finite element equations for simple and complex elements. To make the student solve for field variable for thermal composite wall problems. 									
Course	By the end of the course, the s	tudents will	be al	ble to)					
Outcomes	 Describe the different elements, various approa Analyze the Interpol equations and Solution to Determine the stiffness Trusses and derive sl Elements Derive Hermite Shape problems. 	aches in Fini ation poly to 1-D Bars s matrix a hape functi	te Ele nomia using nd unons	mentals FE p nkno	t Metl by oackaş wn I Highe	nod, Euler-L ge DOFs o	agrange of er			
Unit:1	Introduction				.1 1		1 Hours			

Background of Various Stress analysis methods, comparison of FEM with classical methods. Advantages and limitations of FEM, Steps involved in FEM, Applications of FEM and FEM Packages.

Discretization: Element shapes and behavior – Choice of element types – size and number of elements – Element shape and distortion – Location of nodes – Node and Element numbering.

Different approaches in Finite Element Method –Principle of minimum PE

Lab Component: Meshing of given machine member using a FE Software

Unit:2	Interpolation Models and Solution of 1-D Bars	11Hours
Intermoletion no	alymomials Linear supplestic and subjectionalsy complex	and myltiplay

Interpolation polynomials- Linear, quadratic and cubic. Simplex complex and multiplex elements.2D PASCAL's triangle. CST elements-Shape functions in NCS, Strain displacement matrix and Jacobian for triangular element.(no derivation)

Solution of 1-D Bars: Solutions of bars and stepped bars for displacements, reactions and

stresses by using penalty approach and elimination approach.

Lab Component: Solving various bar problems using a FE Software

Unit:3 Trusses and Higher Order Elements 11 Hours

TrussesStiffness matrix of Truss element. Numerical problems

Higher Order Elements: Lagrange's interpolation, Higher order one dimensional elements-Quadratic and cubic element and their shape functions. Shape function of 2-D quadrilateral elements. Iso parametric, Sub parametric and Super parametric elements. Numerical integration: 1 and 2 gauss point for 1D case.

Lab Component: Solving the given truss using a FE Software

Unit:4	One Dimensional Problems – Beams and Frames	12 Hours
O 11100 .	One Dimensional Floorens Deams and Flames	1 = 110 0110

Finite Element Modeling of a basic beam element in local coordinate system using energy approach; Formulation of element matrices; Assembly of the Global Stiffness Matrix, Mass matrix and Load vector; Treatment of boundary Conditions; Euler Bernoulli (thin) beam element and Timoshenko (thick) beam element; Beam element arbitrarily oriented in plane (2D) as Plane frames and in space as space frame analysis (3D).

Lab Component: Solving the given beam using a FE Software

	8 8
Text Books	1.Bhavikatti S.S,(2006), 'Finite Element Analysis', 4th edition, New Delhi,
	New Age International publishers.
	2. Chandrapatla T.R. and A.D Belegunde A.D, (2008), 'Finite Elements in
	Engineering', 3rd edition, New Delhi, PHI.
References	1. Daryl. L. Logon, (2001), <i>Finite Element Methods</i> , 3 rd edition, New york, Thomson Learning.
	2. Cook R.D, D.S Maltus D.S, Plesha M.E., Witt R.J. (2009), Concepts and applications of Finite Element Analysis, 4th Edition, London, Wiley.

Mapping of Po's and Co's

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	PO
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	11
											(k)
CO ₁					V						
CO ₂					V		V				
CO ₃					V						
CO ₄					V						V

Course Code	Course Title	Course	L	T	P	С	Hr		
M18MD1061	Design and Analysis of	Type	3	1	0	4	5		
WITOWIDTOOT		00)	1		4	3		
	Engineering	SC							
D 11 36 11	Components Internal Semester En								
Solids/Engg Mathematics. Assessment Exam									
	50 Marks 50 Marks								
Course Objectives	1. To enable the s								
	physical princi	-				-			
	2. To provide sys			rehensi	ve knov	vledge (of basics		
	of Design metl 3. To teach the st			llangae	of Dog	ian of a	lomonts		
	and selection of								
	solved.	or sumuote en	CIIICII	.5 101 111	e prook		- 5		
	4. To make the st	udents to de	rive ii	nference	e from t	he desig	n of		
	simple and cor						•		
Course Outcomes	By the end of the course,								
	1. Describe the d	• 1		ractical	design	method	s and		
	various approa			C '1	.1				
	2. Identify the ev methods.	idences of va	arious	Tailure	s throug	gn micro	oscopic		
	3. Analyze failur	es caused di	ie to	hot cor	rosion s	and stre	cc		
	corrosion.	es caused di	ac to	not con	iosion i	ind stre	33		
	4. Demonstrate	the theoretic	cal u	nderstar	nding o	of failu	æ		
	mechanisms.				υ				
Unit:1	Introduction					1	1 Hours		
Perform design calcu	ulations, generate 2D Draw	ings based o	on des	ign cal	culation	is and ci	reate 3D		
Models, Perform Fir	nite Element Analysis on 3I	O models and	d eval	uate the	e design	for aut	omotive		
components like Con	nnecting rod of an IC Engin	ie, Cranksha	ft of a	ın IC Er	ngine et	c.,			
					C				
~ 1			1 11			the ana	lycic tor		
	pecifications for any comm	ercial Autor	nobil	e and p	erioriii	tiio uiiu	1 y 515 101		
realistic operating co	onditions			e and p	erioriii				
realistic operating co	onditions Failure analysis through	microscopy	y				11Hours		
realistic operating co Unit:2 Introduction: Materia	nditions Failure analysis through al failure modes and their idea.	microscopy	y ; Tool	s for fa	ilure an	alysis: (11Hours Optical		
realistic operating co Unit:2 Introduction: Materi microscopy, Transmi	Failure analysis through al failure modes and their is ission electron microscopy,	microscopy	y ; Tool	s for fa	ilure an	alysis: (11Hours Optical		
realistic operating co Unit:2 Introduction: Materi microscopy, Transmi approach to failure a	Failure analysis through al failure modes and their idession electron microscopy, nalysis.	microscopy	y ; Tool	s for fa	ilure an	alysis: (Systema	11Hours Optical		
realistic operating co Unit:2 Introduction: Materi microscopy, Transmapproach to failure a Unit:3	Failure analysis through al failure modes and their id ission electron microscopy, nalysis. Mechanical aspects	microscopy dentification Scanning el	y ; Tool ectroi	s for fai	ilure an scopy. S	alysis: (Systema	11Hours Dptical tic 1 Hours		
realistic operating co Unit:2 Introduction: Materia microscopy, Transma approach to failure a Unit:3 Tensile test, Static	Failure analysis through al failure modes and their idession electron microscopy, nalysis. Mechanical aspects loading, Combined stress,	microscopy lentification Scanning el Principal st	; Tool ectroi	s for fain micros	ilure an scopy. S	alysis: (Systemate) Ifailure,	11Hours Dptical tic 1 Hours Triaxial		
realistic operating co Unit:2 Introduction: Materia microscopy, Transma approach to failure a Unit:3 Tensile test, Static stresses and constra	Failure analysis through al failure modes and their idession electron microscopy, nalysis. Mechanical aspects loading, Combined stress, aint, Plane stress, Plane	microscopy lentification Scanning el Principal st	; Tool ectroi	s for fain micros	ilure an scopy. S	alysis: (Systemate) Ifailure,	11Hours Dptical tic 1 Hours Triaxial		
realistic operating co Unit:2 Introduction: Materia microscopy, Transma approach to failure a Unit:3 Tensile test, Static stresses and constra sensitivity. Shock an	Failure analysis through al failure modes and their idession electron microscopy, nalysis. Mechanical aspects loading, Combined stress, aint, Plane stress, Plane d impact loading.	microscopy dentification Scanning el Principal st strain, Stres	; Tool ectroi	s for fain micros	ilure an scopy. S	alysis: C Systema 1 failure, tors an	11Hours Dptical tic 1 Hours Triaxial d notch		
realistic operating co Unit:2 Introduction: Materia microscopy, Transma approach to failure a Unit:3 Tensile test, Static stresses and constra sensitivity. Shock an Unit:4	Failure analysis through al failure modes and their idession electron microscopy, nalysis. Mechanical aspects loading, Combined stress, aint, Plane stress, Plane d impact loading. Fatigue Failure Analysis	microscopy dentification Scanning el Principal st strain, Stres	; Tool ectron resses	s for fain micros	ilure an scopy. S ries of ion fac	alysis: O Systema 1 failure, tors an	11Hours Deptical tic 1 Hours Triaxial d notch 2 Hours		
realistic operating co Unit:2 Introduction: Materia microscopy, Transma approach to failure a Unit:3 Tensile test, Static I stresses and constra sensitivity. Shock an Unit:4 Analysis of Fatigue:	Failure analysis through al failure modes and their idession electron microscopy, nalysis. Mechanical aspects loading, Combined stress, aint, Plane stress, Plane d impact loading.	microscopy dentification Scanning el Principal st strain, Stres	; Tool ectron resses ss con itions,	s for fain micros	ilure an scopy. S	alysis: Osysteman failure, tors an Failure	11Hours Deptical tic 1 Hours Triaxial d notch 2 Hours s related		

Text Books	1. C. R. Brooks and A. Choudhury (2002), Failure Analysis of Engineering Materials, McGraw-Hill
	2. Richard G. Budynas, J. Keith Nisbett, Shigley, (2010) 'Mechanical Engineering Design', 9 th Edition, The McGraw-Hill Companies.
	3. Robert C. Juvinall Kurt M. Marshek, (1995), 'Fundamentals of Machine Component Design', John Wiley & Sons, Inc.
References	1. Joseph E. Shigley, Charles R. Mischke, "Standard handbook of machine design", 2 nd Edition, The McGraw-Hill Companies.
	2. Robert C. Juvinall, Kurt M. Marshek "Machine Design Component Design" 5 Th Edition, International Student Version, John Wiley & Sons, Inc.

Mapping of Po's and Co's

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO_{10}	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	РО
											11
											(k)
CO ₁											
CO ₂		V					1				
CO ₃	V										
CO ₄	V										

Course Code	Course Title	Course Type	L	Т	P	С	Hr		
M18MD1062	Design of Experiments	gn of Experiments SC 3 1 0 4 5							
Prerequisite: En	Prerequisite: Engineering Mathematics, Design of Internal Assessment						Semester End Exam		
machine element	TS .			Marks		50 Marks			
Course Objectives	 To make students to understand the Concepts of random variable, probability, density function cumulative distribution function. Sample and population To enable students to identify Measures of variability, Ranking method, Column effect method & Plotting method, Analysis of variance (ANOVA) in Factorial Experiments: YATE's algorithm for ANOVA, To understand & identify the Types of Orthogonal Arrays, selection of standard orthogonal arrays, Linear graph sand Interaction assignment, Dummy level Technique To educate the students, Parameter and tolerance design concepts, 								
Course Outcomes	 Taguchi's inner and outer arrays, parameter design strategy After successful completion of the course the student shall be able to 1. Identify the various controllable & uncontrollable factors on the design of experiments. 2. Experiment under various situation to solve Classical Experiments: Factorial Experiments: Terminology: factors, levels, interactions, treatment combination, randomization. 3. Apply the Experiment Design Using Taguchi's Orthogonal Arrays. 4. Describe the Signal To Noise Ratio, Parameter And Tolerance 								
Unit1:	Design. Introduce	ction				11 H	Iours		

Introduction: Strategy of Experimentation, Typical applications of Experimental design, Basic Principles, Guidelines for Designing Experiments.

Basic Statistical Concepts: Concepts of random variable, probability, density function cumulative distribution function. Sample and population, Measure of Central tendency; Mean median and mode, Measures of Variability, Concept of confidence level. Statistical **Distributions:** Normal, Log Normal & Weibull distributions. Hypothesis testing, Probability plots, choice of sample size. Illustration through Numerical examples.

Unit2:	Experimental Design, Analysis And Interpretation Methods	12Hours
--------	---	---------

Experimental Design: Classical Experiments: Factorial Experiments: Terminology: factors, levels, interactions, treatment combination, randomization, Two-level experimental designs for two factors and three factors. Three-level experimental designs for two factors and three factors, Factor effects, Factor interactions, Fractional factorial design, Saturated Designs, Central composite designs. Illustration through Numerical examples.

Analysis And Interpretation Methods: Measures of variability, Ranking method, Column effect method & Plotting method, Analysis of variance (ANOVA) in Factorial Experiments: YATE's algorithm for ANOVA, Regression analysis, Mathematical models from experimental

data. Illustration through Numerical examples.

Unit 3 Quality of Experimental Design 12 Hours

Quality By Experimental Design: Quality, Western and Taguchi's quality philosophy,

Quality By Experimental Design: Quality, Western and Taguchi's quality philosophy, elements of cost, Noise factors causes of variation. Quadratic loss function & variations of quadratic loss function. **Robust Design:** Steps in Robust Design: Parameter design and Tolerance Design. Reliability Improvement through experiments, Illustration through Numerical examples.

Experiment Design Using Taguchi's Orthogonal Arrays: Types of Orthogonal Arrays, selection of standard orthogonal arrays, Linear graphsand Interaction assignment, Dummy level Technique, Compound factor method, Modification of linear graphs. Illustration through Numerical examples.

Unit 4:	Signal To Noise Ratio, Parameter And Tolerance	10 Hours
	Design	

Signal To Noise Ratio: Evaluation of sensitivity to noise. Signal to Noise ratios for static problems: Smaller-the-better type, Nominal-the –better-type, Larger-the-better type. Signal to Noise ratios for Dynamic problems. Illustration through Numerical examples.

Parameter And Tolerance Design: Parameter and tolerance design concepts, Taguchi's inner and outer arrays, parameter design strategy, tolerance design strategy. Illustration through Numerical examples.

cai examples.
1. Douglas C. Montgomery, (2007), 'Design and Analysis of Experiments' 5 th Edition Wiley India Pvt. Ltd.
2. Madhav S. Phadke, (1989), 'Quality Engineering using Robust Design' Prentice Hall.
 Thomas B. Barker, (1985), 'Quality by Experimental Design', MarcelDekker Inc ASQC Quality Press. C.F. Jeff Wu Michael Hamada, (2002), 'Experiments planning, analysis,
 and parameter Design optimization', John Wiley Editions. W.L. Condra, (1985), 'Reliability Improvement by Experiments' MarcelDekker, Inc ASQC Quality Press Phillip J. Ross,(1996), 'Taguchi Techniques for Quality Engineering', 2ndEdition, McGraw Hill International Editions.

Program outcomes	PO ₁	PO ₂	PO ₃	PO	PO ₅	PO ₆	PO	PO ₈	PO ₉	PO ₁₀	PO ₁₁
Course outcomes	(a)	(b)	(c)	4	(e)	(f)	7	(h)	(i)	(j)	(k)
				(d)			(g)				
CO ₁	V										
CO ₂											
CO ₃	V										
CO ₄	V										

		T	1 -		1-	Τ ~	1		
Course Code	Course Title	Course	L	T	P	C	Hr		
		Type							
		SC	3	1	0	4	5		
M18MD1063	Advanced Materials	SC							
Prerequisite: Mate	, , , , , , , , , , , , , , , , , , ,			Inter	rnal	Sem	nester End		
Man	ufacturing Technology.			Assess	ment		Exam		
				50 M	arks	50 Marks			
Course	The objectives of this subject a	re to prov	ide t	he stud	dents wit	h:			
Objectives	1. An understanding of the	ne princip	oles,	capa	bilities,	limita	tions and		
-	applications of commonly	applications of commonly used advanced materials.							
	2. To emphasize the significance of materials selection in the Composite								
	materials.						_		
	3. To comprehend the import	ance of sha	ape r	nemor	y and su	per allo	oys.		
	4. To get familiarize with	the new	co	ncepts	of Na	no Sc	ience and		
	Technology.			-					
Course	Upon completion of the subject, students will be able to:								
Outcomes	1. Select appropriate advance	•					ons.		
	2. Characterize the different of					1			
	3. Select the shape memory a								
	4. Choose appropriate Nano i	-			_				
					J 1	11			
Unit:1						11 Ho	ours		
	Metals and A	lloys							
Metals and Allo	ys: Classification and chara-	cteristics:	Met	tals, (Ceramics	, Poly	mers and		
composites. Ferrou	as Alloys: properties, structure.								
Non Formus allow	ys: Alloys of copper, Aluminum	nickal m	na cre	acium	titanium	lead	tin Zine		
composition, heat	treatment, structure, properties a	nd applica	ation	5814111,	titaiiiuii	i, icau,	till, ZillC -		
Unit:2	Composite					11Ho	urs		
Composites: Defin	nition, classification and charac	teristics of	con	nposite	materia	ıls , Me	etal Matrix		
_	ner matrix composites and Cera			-					
Smart Materials:	<u> </u>								
Materials, Smart	Materials (Physical Properti								
	ostrictive Materials, and Self-He				ŕ				
whaterials, whagher	osurctive materials, and Self-Re	ranng Poly	IIICI	5.					

Unit:3 Super alloys & shape memory alloys: 11 Hours

Super alloys & shape memory alloys: Ni-based, Fe-based, Co-based super alloys, and properties and its applications, Cu-based and NiTi shape memory alloys properties and its applications. High temperature alloys: Classification of Titanium alloys, properties and applications, heat treatment and machining of Ti alloys.

Unit:4 Nanoscience and Nanotechnology: 12 Hours

Introduction to Nanoscience and Nanotechnology: Basic concepts of Nanoscience and Nanotechnology, Carbon nanotubes – Material processing by chemical vapor deposition and physical vapor deposition – Potential uses of nanomaterials in electronics, robotics, computers, sensors, sports equipment, mobile electronic devices, vehicles and transportation – Medical applications of nanomaterials.

T . D . 1	1 W.H. D C.H. (2000) W. (1 C.) 6 E. ()
Text Books	1. William D. Callister Jr (2008), Materials Science & Engineering An
	introduction, 4th edition, London, John Wiley & Sons.
	2. R. A. Flinn& P. K. Trojan (2007), Engg. Materials & their
	applications-, 4th edition, Jaico Publishing House.
	3. M. V. Gandhi and B. So Thompson (1992) Smart Materials and
	Structures, London, Chapman & Hall.
	4. Thiruvadigal, J.DPonnusamy, S, Sudha.D. and Krishnamohan,
	.(2013), <i>Materials Sciences</i> - Chennai ,M Vibrant Publication.
	5. Rajendran.V (2011), <i>Materials Science</i> , New Delhi, Tata McGraw-
	Hill.
	11111.
References	1. James.F. Shackleford (2010), Introduction to Material Science and
References	` //
	Engineering, 7 th edition. New York, MacMillan publisher.
	2. Chawla K.K, (1998), Composite Materials - Science and
	Engineering, 2 nd edition, Newyork, Springer – Verlag.
	3. Mick Wilson, KamaliKannangara (2005), Nanotechnology – Basic
	Science and Emerging Technologies, 1st edition, Overseas Press India
	Private Limited.
	Filvate Littiteu.

Program outcomes	PO_1	PO_2	PO_3	PO_4	PO_5	PO_6	PO ₇	PO_8	PO ₉	PO_1	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	0	PO_1
										(j)	1
											(k)
CO ₁		V									
CO ₂		V					1				
CO ₃		V									
CO ₄											

Course Code	Course Title	Course Type	L	Т	P	С	Hr	
M18MD1071	Theory of Plates and Shells	SC	3	1	0	4	5	
	achine Design, FEM, MOM	50	Iı	nterna	1	Sen	nester End	
				essm			Exam	
				Marl			0 Marks	
Course	1. To enable the students to unde	rstand Dif						
Objectives	plates.	istana Dii		Do um	aar j	Ondin	3113 101	
	2. Provide systematic basic know	ledge for (Circula	ır plat	es sub	piected	to Axi-	
	symmetrical loads	10080 101	011 0 0110	- p		jeevea	VO 1 2.11	
	3. To enable the students to unde	rstand Fini	te diffe	erence	e meth	od. Fi	nite element	
	methodology for plates,							
	Formulate to understand the basic principles of the Membrane and bending							
		theory for singly curved and doubly curved shells						
Course	After completion of the course the)			
Outcomes	1. Demonstrate the fundamentals					s and a	nalvze the	
	Plates subjected to lateral load	_		6 9-	1 10000	, 111107 00		
	2. Formulate Circular plates sub		xi-svm	metri	ical lo	ads		
	3. Apply the Rayleigh-Ritz meth		•					
	4. Derive the equations of Shells and Classification of shells.							
Unit:1	Simple bending o						12 Hours	
Simple bending	of Plates-Assumptions in thin plate	theory, D	ifferen	t relat	tionsh	ips, Di	fferent	
Boundary Condi	tions for plates, Plates subjected to l	lateral load	ls, Nav	ier's	metho	d for s	imply	
supported plates,	, Levy's method for general plates, l	Example p	roblem	s witl	h diffe	rent ty	pes of	
loading.								
Unit:2	Circular plates subjected to Ax	xi-symmet	rical l	oads			12 Hours	
Circular plates	subjected to Axi-symmetrical load	ls, concent	rated 1	oad, ı	ıniforı	mly dis	stributed	
load and varying	load, Annular circular plate with en	nd moment	s.					
Unit:3	Rayleigh-Ritz m	ethod					11 Hours	
Rayleigh-Ritz 1	method: Application to different	problems	, Finit	e dif	ferenc	e met	hod, Finite	
element methodo	ology for plates, Orthotropic Plates	Bending	of anis	sotrop	oic pla	tes wit	th emphasis	
on orthotropic pl	ates, Material Orthotropic, Structura	al Orthotro	pic, Pl	ates c	on elas	stic fou	ndation.	
Unit:4	Shells						10 Hours	
Shells- Classifica	ation of shells - Membrane and bend	ding theory	for si	ngly o	curved	and d	oubly	
curved shells - V	arious approximations - Analysis of	folded pla	ites.					
Text Books	1. S.P.Timoshenko and S.Woinov	vsky ,(195	9), The	eory o	f plate	es and	shells	
	Krieger, McGraw-Hill.							
D. C	2. A.C.Ugural, (1999), 'Stresses in plates and shells', McGraw-Hill.							
References	1. Analysis of plates, T.K. Varada 1999.	n and K.B	haskar,	, Narc	sa Pu	blishin	g House,	
	2. Stresses in Shells, Flugge. Bla	isdell Publ	ishing	Co, 1	966 3	. Desig	n and	
	construction of concrete shell i	roofs by G	.S.Ran	naswa	ımy, C	BS Pu	blishers&	
	Distributors, 1986.	. 1	'DI	ъ	, · · ·	r 11 37	T	
	3. Rudolph Szilard, Theory and A 1986.	Analysis of	Plates	, Prer	itice F	iaii, Ne	ew Jercy	

Program outcomes	PO ₁	PO_2	PO ₃	PO ₄	PO ₅	PO_6	PO ₇	PO_8	PO ₉	PO_{10}	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	PO ₁
											1
											(k)
CO ₁				V							
CO_2				V			1				
CO ₃				V							
CO ₄				V							

Course Code	Course Title	Course Type	L	Т	P	C	Hr			
M18MD1072	Design for Manufacturing and Assembly	SC	3	1	0	4	5			
Prerequisite De	sign: SOM, Manufacturing Technology	,		Internal		S	emester			
Machine.	sign. 50W, Wandracturing Teenhology	,	A	ssessme						
Wiacinne.				50 Mark	S	5	0 Marks			
Course	1. To enable the students to	understand	Ger	neral de	sign	prin	ciples for			
Objectives	manufacturability, strength and me	echanical fa	ctors,	, mechan	isms s	select	ion.			
	2. Provide systematic basic known	wledge fo	r W	orking	princi	ple,	Material,			
	Manufacture, Design Possible solu	itions, Mate	erials	choice,						
	3. To enable the students to underst	To enable the students to understand Design features to facilitate machining -								
	drills - milling cutters, keyways, D	drills - milling cutters, keyways, Doweling procedures								
	4. Formulate the Identification of	Formulate the Identification of uneconomical design, Design for economy,								
	Design for clamp ability, Design for	Design for clamp ability, Design for accessibility, modifying the design.								
Course		ter completion of the course the student will be able to								
Outcomes	1. Demonstrate the fundamentals of Feature tolerances, Geometric to Tolerance stacks.	of evaluati	on m	ethod, I			capability, n features,			
	2. Formulate Factors Influencing Form	m Design: V	Worki	ng princi	ple, N	M ater	ial,			
	Manufacture, Design Possible solutions.									
	3. Determine the Component Design in Machining & Casting Considerations.									
	4. Design for Manufacture and Case S	tudies, Idei	ntifica	ition of u	necor	omic	cal			
	design, Design for economy.									
Unit:1	Introduction						12 Hours			
mechanisms sel	General design principles for manufaction, evaluation method, Process mbly limits, Datum features, Tolerance	capability	stren, Fea	gth and ture tol	mech eranc	anica es, (al factors, Geometric			
Unit:2	Factors Influencing For						11Hours			
Factors Influen	ncing Form Design: Working principials choice, Influence of materials on f	ole, Materi	al, M from	anufactu n design	re, D	esigr lded	Possible			
Unit:3	Component Design in Machi	ning &Cas	sting				11 Hours			
	Consideration									
milling cutters, l simplification by Component D	Component Design Machining Consideration: Design features to facilitate machining - drills - milling cutters, keyways, Doweling procedures, counter sunk screws, Reduction of machined area - simplification by separation, simplification by amalgamation, Design for machinability. Component Design Casting Considerations: Redesign of castings based on parting line considerations, Minimizing core requirements, machined holes, redesign of cast members to obviate									
Unit:4	Design for Manufacture and Case Studies 11 Hours									
economy, Desig assembly, Group	nufacture and Case Studies: Identify for clamp ability, Design for acceptechnology, Computer Applications for	ssibility, M r DFMA.	lodify	ying the	desig	gn, D				
Text Books:	1. Design for Manufacture, Harry	, ,					D1 11 2			
References:	sons Ltd.	 Engineering Design - A systematic approach, Robert Matousek, Blackie & sons Ltd. Hand Book of Product Design for Manufacturing, James G. Bralla, 								

3. Knowledge based design for manufacture, Swift K.G, Kegan Page Ltd., 1987

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	0	PO ₁₁
										(j)	(k)
CO ₁	V			√							
CO ₂	V			V							
CO ₃	V			V							
CO ₄	V			V							

Course Code	Course Title	Course Type	L	T	P	С	Hr			
M18MD1073	Vehicle Dynamics	SC	3	1	0	4	5			
Duana aviaita. En	as Mathamatics Machanical vibration Vin	amatica	Iı	ntern	al	Se	mester			
Mechanics of Ma	gg. Mathematics, Mechanical vibration, Kin	ematics,	Ass	sessn	nent	End	l Exam			
Mechanics of Ma	nenais.		50	Maı	ks	50	Marks			
Course	1. To know about the application	of basic	mec	hanio	es pi	incip	les for			
Objectives	dynamic analysis of vehicles.				_					
	2. To study the behavior of vehicle.									
Course	After completion of the course the student					• . •				
Outcomes	1. Describe how passenger comfort is achieved along with vehicle									
		stability. 2. Predict the various forces and loads and performance under								
	acceleration, ride and braking.	<u> </u>								
	3. Derivate the dynamic equations gov	verning a i	oad	vehic	cle.					
	4. Solve the fundamental problems in	-								
Unit 1	Concept of Vibration	<u> </u>			12 F	Iours				
Definitions, Mod	Definitions, Modelling and Simulation, Global and Vehicle Coordinate System, Free, Force									
Undamped and Damped Vibration, Response Analysis of Single DOF, T wo DOF, Multi DOF,										
•	actor, Transmissibility, Vibration absorber,	•								
•	on, Critical speed.				Ü		ŕ			
Unit 2	Vehicle Dynamics and Fundamentals of	f Load Tra	ansfe	er	11 H	Iours				
Introduction to	Vehicle Dynamics, Vehicle Performance-A				aking	2: Ri	de and			
	ation of Road Loads, Tractive Resistance and									
O.	tions for forces acting on vehicle axles, lo			-						
1 0 1	n individual wheel, gradeability, Static Stabi	· ·		1000			,			
Unit 3	Vehicle Ride				11 F	Iours				
	tion. Ride Rate and Vehicle natural frequence	cv. dampii	ng co	effic			ariable			
	assive, Semi-active and active dampers suspe	-	-							
	lels response analysis, Vehicle pitch and ro									
	ion damping, and tire stiffness, Air suspension	•				-				
Unit 4	Lateral dynamics	J				Iours				
Steady state hand	l lling characteristics, Steady state response t	o steering	inni	ıt. St	abili	v of	vehicle			
	oad, parked on inclined road, accelerating ca									
-	Road, Optimal Drive and Brake Force Dis									
	cles on a Crest and Dip-Vehicles on a Cre									
suspension on co	-	ost and ve	111010	5 011	u D	ъ, ъ	11001 01			
Text Books	1. Rao, S.S. and Yap, F.F., (2011), M Saddle River: Prentice Hall.	echanical	vibra	ation	s (Vo	ol. 4)	Upper			
	2. Wong, J.Y., (2008), Theory of groun	nd vehicle	s. Jo	hn W	iley	& So	ns.			
	3. Rajamani, R., (2011), Vehicle dyna & Business Media.				-					
	4. Gillespie, T.D., (1992), Fundamenta	als of vehi	icle d	lynar	nics.	Warı	endale,			

	PA: Society of Automotive Engineers, 519.
References	 Dean Karnopp, "Vehicle Stability", 1st edition, Marcel Dekker, 2004 Nakhaie Jazar. G., "Vehicle Dynamics: Theory and Application", 1st edition, Springer, 2008 Michael Blundell & Damian Harty, "The Multibody Systems Approach to Vehicle Dynamics", Elsevier Limited, 2004 Hans B Pacejka, "Tire and Vehicle Dynamics", 2nd edition, SAE International, 2005 John C. Dixon," Tires, Suspension, and Handling", 2nd edition, Society of Automotive Engineers Inc, 1996
	6. Jan Zuijdijk, 'Vehicle dynamics and damping', Author House, 2009

Program outcomes	PO ₁	PO_2	PO ₃	PO ₄	PO ₅	PO_6	PO ₇	PO_8	PO ₉	PO_1	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	0	РО
										(j)	11
											(j)
CO ₁	√			V							
CO_2	√			1							
CO ₃	V			V							
CO ₄	V			V							

SECOND SEMESTER

Course Code	Course Title	Course Type	L	Т	P	C	Hr		
M18MD2010	Experimental Stress Analysis	HC	3 0 1 4 5						
Prerequisite: Engg.	Prerequisite: Engg. Mathematics, SOM, TOE, MMM.						Semester End		
		Asse	essmen	t		Exam			
			50	Marks		5() Marks		
Course Objectives Course Outcomes	 To understand the relation plane strain conditions To establish the fundame logging and newly experim To be able to use the expand strains, mechanism or problems. To be able to understand Pamodel deformation After Completion of the course students. Describe the Sensitivity & Describe the Recording Instance and Explain the Bi- refringent of the Course students. Describe the Photo Elasticities 	ental conceptental Brittle erimental te of formation lane and circulate the construction of the constructi	e able to Brittle of Moire M	static rags technes on the loire of polarization: strain geoating Method	reconique he (rining red) de l'aring gaug	rding les. Coatin es in light,	and data g stresses practical locking in		
Unit:1	Strain Measurement Methods 12 Hours								

Introduction: Theory of Elasticity, Plane stress and plane strain conditions, Compatibility conditions. Problems using plane stress and plane strain conditions, Three-dimensional stress strain relations.

Strain Measurement Methods: Various types of strain gauges, Electrical Resistance strain gauges, semiconductor strain gauges, strain gauge circuits.

Lab Component: To determine the young's, modulus the given material with the help of strain rossets& load cell.

ı	Unit:2	Recording Instruments & Brittle coatings	12 Hours

Recording Instruments: Introduction, static recording and data logging, dynamic recording at very low frequencies, dynamic recording at intermediate frequencies, dynamic recording at high frequencies, dynamic recording at very high frequencies, telemetry systems.

Brittle coatings: Introduction, coating stresses, failure theories, brittle coating crack patterns, and crack detection, ceramic based brittle coatings, and resin based brittle coatings, test procedures for brittle coatings analysis, calibration procedures, and analysis of brittle coating data.

Unit:3	Bi- refringent Coatings & Moire Methods	11 Hours
--------	---	----------

Bi-refringent Coatings: Introduction, Coating stresses and strains, coating sensitivity, coating materials, application of coatings, effects of coating thickness, Fringe-order determinations in coatings, stress separation methods.

Moire Methods: Introduction, mechanism of formation of Moire fringes, the geometrical approach to Moire-Fringe analysis, the displacement field approach to Moire-Fringe analysis, out of plane displacement measurements, out of plane slope measurements, sharpening and multiplication of Moire-Fringes, experimental procedure and techniques.

Unit:4	Photo Elasticity&Three-dimensional Photo 10 Hours									
	Elasticity									
Photo Elasticity: P	Photo Elasticity: Photo elasticity – Polariscope – Plane and circularly polarized light, Bright and									
dark field setups, Photo elastic materials – Isochromatic fringes – Isoclinics										
Three-dimensional Photo Elasticity: Introduction, locking in model deformation, materials for										
three-dimensional photo elasticity, machining cementing and slicing three-dimensional models,										
slicing the model and interpretation of the resulting fringe patterns, effective stresses, the shear										
difference method in	n three dimensions, applications of the Frozen-stress met	hod, the scattered light								
method.										
Lab Component: To	determine the fringe constants for photo elastic materia	l by using polariscope.								
Text Books	1. Dally and Riley, "Experimental Stress Analysis", McC	Graw Hill.								
	2. Sadhu Singh, "Experimental Stress Analysis". Khanna	publisher.								
	3. Srinath L.S Experimental stress Analysis, Tata McGra	w Hill.								
References	1. M.M.Frocht "Photoelasticity Vol I and Vol II, John W	iley &\ sons.								
	2. Perry and Lissner, "Strain Gauge Primer",									
	3. Kuske, Albrecht & Robertson "Photo Elastic Stress Ar	nalysis", John Wiley								
	& Sons.									

4. Dave and Adams,"Motion Measurement and Stress Analysis",v

Program outcomes	PO_1	PO_2	PO_3	PO_4	PO ₅	PO_6	PO_7	PO_8	PO ₉	PO_{10}	PO
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	11
											(k)
CO_1											
CO_2											
CO ₃	V										
CO ₄	√										

Course Title	Cours	Cours L T P				Hr	
	e						
	Type						
Finite Element Procedures-II	HC	3	0	1	4	5	
Element Procedures-1			Internal		Se	mester End	
						Exam	
			50 Marks	3		50 Marks	
principles underlying to dynamic and heat transfer. 2. To provide systematic Finite element method. 3. To teach the students to selection of suitable el. 4. To make the student so wall problems.	 principles underlying the Finite Element Method (FEM) as applied to dynamic and heat transfer problems. To provide systematic and comprehensive knowledge of basics of Finite element method as applied to axis symmetric problems To teach the students the characteristics of various elements and selection of suitable elements for the problems being solved. To make the student solve for field variable for thermal composite 						
 Compute Eigen Vector and Eigen Values of 1D and 2 D problems Knowledgeable about the FEM as a numerical method for the solution of solid mechanics, structural mechanics and thermal problems Developing skills required to use a commercial FEA software Apply FEM method to solve 1D heat transfer problems and composite walls. 							
	Finite Element Procedures-II 1. To enable the students principles underlying to dynamic and heat transection 2. To provide systematic Finite element method 3. To teach the students to selection of suitable elements and problems. After Completion of the course sterior 1. Compute Eigen Vector 2. Knowledgeable about solution of solid mechaproblems 3. Developing skills requested 4. Apply FEM method to composite walls.	Finite Element Procedures-II HC 1. To enable the students to unders principles underlying the Finite dynamic and heat transfer proble 2. To provide systematic and con Finite element method as applie 3. To teach the students the charact selection of suitable elements fo 4. To make the student solve for fix wall problems. After Completion of the course student shall 1. Compute Eigen Vector and Eige 2. Knowledgeable about the FEM solution of solid mechanics, struproblems 3. Developing skills required to us 4. Apply FEM method to solve 1D	Finite Element Procedures-II HC 3 Element Procedures-1 A 1. To enable the students to understand the principles underlying the Finite Element dynamic and heat transfer problems. 2. To provide systematic and compreher Finite element method as applied to ax 3. To teach the students the characteristic selection of suitable elements for the problems. 4. To make the student solve for field variously wall problems. After Completion of the course student shall be at 1. Compute Eigen Vector and Eigen Value 2. Knowledgeable about the FEM as a number solution of solid mechanics, structural problems 3. Developing skills required to use a conduction of the course student solve 1D heat the composite walls.	Finite Element Procedures-II HC 3 0 Element Procedures-I HC 3 0 Element Procedures-I Internal Assessmen 50 Marks 1. To enable the students to understand the mather principles underlying the Finite Element Methodynamic and heat transfer problems. 2. To provide systematic and comprehensive kracking Finite element method as applied to axis symmomal. To teach the students the characteristics of various selection of suitable elements for the problems. 4. To make the student solve for field variable for wall problems. After Completion of the course student shall be able to: 1. Compute Eigen Vector and Eigen Values of 1D 2. Knowledgeable about the FEM as a numerical solution of solid mechanics, structural mechanic problems 3. Developing skills required to use a commercial 4. Apply FEM method to solve 1D heat transfer promposite walls.	Finite Element Procedures-II HC 3 0 1 Element Procedures-I HC 3 0 1 Element Procedures-I Internal Assessment 50 Marks 1. To enable the students to understand the mathematical principles underlying the Finite Element Method (FE dynamic and heat transfer problems. 2. To provide systematic and comprehensive knowled Finite element method as applied to axis symmetric particular of suitable elements for the problems being 4. To make the student solve for field variable for them wall problems. After Completion of the course student shall be able to: 1. Compute Eigen Vector and Eigen Values of 1D and 2 2. Knowledgeable about the FEM as a numerical method solution of solid mechanics, structural mechanics and problems 3. Developing skills required to use a commercial FEA 4. Apply FEM method to solve 1D heat transfer problem composite walls.	Finite Element Procedures-II HC 3 0 1 4 Element Procedures-I HC 3 0 1 4 Element Procedures-I Element Procedures-I Element Procedures-I Element Procedures-I Element Procedures-I Element Procedures-I Element Finite Element Method (FEM) a dynamic and heat transfer problems. 2. To provide systematic and comprehensive knowledge of Finite element method as applied to axis symmetric problems. 3. To teach the students the characteristics of various element selection of suitable elements for the problems being solve 4. To make the student solve for field variable for thermal convall problems. After Completion of the course student shall be able to: 1. Compute Eigen Vector and Eigen Values of 1D and 2 D per 2. Knowledgeable about the FEM as a numerical method for solution of solid mechanics, structural mechanics and the problems 3. Developing skills required to use a commercial FEA softwork Apply FEM method to solve 1D heat transfer problems and composite walls.	

Finite Element Formulation for point/lumped mass and distributed masses system: Finite Element Formulation of one dimensional dynamic analysis: bar and beam element. Finite Element Formulation of Two dimensional dynamic analysis: triangular membrane and axisymmetric element, quadrilatateral membrane. Evaluation of eigen values and eigen vectors applicable to bars, beams.

Lab Component: Finding out of Eigen Vector and Eigen Values of given member using a FE Software

Unit:2	Vector Varial	ole problems - Plane stress, Plane Strain	11Hours	
	and Axi-symr			
Egyililadiyaa agus	tion formanistion	Engage minerals and formulating the along		Dlana

Equilibrium equation formulation – Energy principle and formulating the element matrices - Plane stress, plane strain and axi-symmetric elements; Orthotropic materials; Iso-parametric Elements; Natural coordinate system; Four-node Quadrilateral for Axisymmetric Problems; Hexahedral and tetrahedral solid elements; Linear, Quadratic and cubic elements in 1D, 2D and 3D, C_0 and C_1 continuity elements

Lab Component: Solving Axis symmetric problems using a FE Software

Unit:3	Finite Element Formulations for Structural Mechanics	11 Hours							
	Problems:								
Basics of plates and shell theories: Classical thin plate Theory, Shear deformation Theory and Thick									
Plate theory. Finite	e Element Formulations for triangular and quadrilateral Pla	te elements. Finite							
element formulation	n of flat, curved, cylindrical and conical Shell elements								
Lab Component: Solving the given plate using a FE Software									
Unit:4	Heat transfer problems 12 Hours								
Steady state heat t	ransfer, 1D heat conduction governing equations, Galerkin's	s approach for heat							
conduction and solu	ation for composite walls.								
Solving the field pro	oblems such as heat transfer in automotive cooling fin, engine	cover.							
Lab Component: S	Solving the given heat transfer problem using a FE Softwa	re							
Text Books	1. Seshu. P, (2013), Finite Element Analysis Prentice Ha	ll of India.							
	2. S.S. Bhavikatti (2006) Finite Element Analysis New	w Age International							
	publishers,								
	3. T.R.Chandrapatla, A.D Belegunde, Finite Elements in Engineering 3rd								
	Ed PHI.								
References	1. Daryl. L. Logon, Finite Element Methods Thomson L	earning 3 rd edition,							
	2001.								

of Finite Element Analysis Wiley 4th Ed, 2009.

J.N.Reddy, Finite Element Method, McGraw - Hill International Edition.
 R.D. Cook D.S Maltus, M.E Plesha, R.J.Witt, Concepts and applications

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	РО
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	0	11
										(j)	(k)
CO ₁					V						
CO ₂					V						
CO ₃					1						
CO ₄					V						

Course Code	Course Title	Course Type	L	T	P	С	Hr		
M18MD2030	Advanced Theory of Vibration	НС	3	0	1	4	5		
Prerequisite: Engg M	ıl		emester						
Trerequisite: Engg iv	Assessme								
	Assessment End Exam 50 Marks 50 Marks								
G 01: .:	I)	U Man	KS	3() IVIALKS		
Course Objectives	 To enable the students to understand response to periodic and non-periodic excitations. To teach students about transient Vibration by Laplace transformation formulation. To enable students to solve free vibration of spring - coupled systems under 2DoFs To apply modal analysis to forced vibrations using matrix inversion for MDOF systems. To understand the importance of condition monitoring techniques. To apply SPM and AE techniques in analyzing machine failures. 								
Course Outcomes	 After completion of the course, the student will be able to Apply Duhamel's Integral in solving Impulse response function. Analyze transient vibrations using Laplace transformation formulation and analyze MDOF systems for Eigen values and Eigen vectors. Apply SPM and AE methods to identify machine failures. Analyze the fan bearings and gas compressors for the faults. 								
Unit:1	Review of Fundamentals of vibra					Iours			
	systems								
Fundamentals of v	Fundamentals of vibration: Review of Single degree system - Response to periodic and non-								

Fundamentals of vibration: Review of Single degree system - Response to periodic and non-periodic excitations - Duhamel's Integral - Impulse Response function - Single degree freedom forced vibration with elastically coupled viscous dampers.

 $\textbf{Two degree of freedom systems:} \ \textbf{Free vibration of spring - coupled systems-Simple problems}$

Lab Component: Carrying out harmonic and non-harmonic excitation of mechanical systems using FE package.

Unit:2	Multi-degree of freedom system and Continuous	11 Hours
	systems	

Multi-degree of freedom system: Normal mode of vibration - Flexibility Matrix and Stiffness matrix - Eigen values and Eigen vectors - orthogonal properties - Modal matrix, Modal Analysis - Forced Vibration by matrix inversion.

Vibration of continuous systems: Vibration of strings-wave equations - vibration of rods - Euler Equation for Beams - Effect of Rotary inertia and shear deformation.

Lab Component: Carrying out modal and harmonic analysis of continuous systems

Unit:3	Condition monitoring methods and Vibration analysis	11 Hours

Condition monitoring methods and Vibration analysis: Various Condition Monitoring Methods, Economics of Condition Monitoring, Setting up a CM Activity.

Machinery signatures, Vibration severity criteria, Vibration frequency domain and time domain analysis, Shock Pulse Methods for testing Antifriction bearings, Acoustic emission technique (AET)-

Instrumentation, Transducers, Preamplifier and filter, Main amplifier and Signal processing/ Display unit.

Lab Component: Obtaining and analyzing machinery vibration signatures using accelerometer and									
FFT analyzer.									
Unit:4	Condition Monitoring Case Studies & Applications: 11 Hours								
Failure of fan bear	ings- History of failures, Analysis of the failures, Solution. High frequency								
vibration of gas compressor-History of trouble, Analysis of trouble, Solution. Monitoring of cracks in									
rotors- Turbo comp	ressor misalignment. Detection of faulty electrical components. Turbine shell								
distortion. Symptom	s and Detections.								
Lab Component: C	ollecting and analyzing machinery vibration signatures of defective parts.								
Text Books	1. S. S. Rao, 'Mechanical Vibrations', Pearson Education Inc, 4th edition, 2003.								
	2. V. P. Singh, 'Mechanical Vibrations', Dhanpat Rai & Company, 3rd edition, 2006.								
	3. Update CEP ISTE New Delhi, 'Condition Monitoring and condition based maintenance'.								
	4. R. A. Caollacatt, Chapman, 'Mechanical Fault Diagnosis and Condition Monitoring', Chapman and hall 1977.								
References	1. G. K.Grover, 'Mechanical Vibrations', Nem Chand and Bros, 6th edition, 1996.								
	2. W. T. Thomson, M. D. Dahleh and C. Padmanabhan, 'Theory of Vibration with Applications', Pearson Education Inc, 5th edition, 2008.								

Mapping of Po's and Co's

McGraw Hill, Special Indian Edition, 2007.

3. S. Graham Kelly, 'Mechanical Vibrations', Schaum's outline Series, Tata

Program outcomes	PO_1	PO_2	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO_8	PO ₉	PO_{10}	PO ₁₁
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)
CO ₁	$\sqrt{}$										$\sqrt{}$
CO ₂							V				
CO ₃											
CO ₄	$\sqrt{}$										

Course Code	Course Title	Course Type	L	T	P	C	Hr			
M18MD2040	Tribology and Bearing Design	HC	3	1	0	4	5			
Prerequisite: Engg.	Mathematics, MSM, MOM.		In	ternal		Ser	nester End			
			Ass	essme	nt		Exam			
	50 Marks 50 Marks									
Course Objectives	 Recognize the properties of lubrication, Regimes of Lubrication Identify the Hydrodynamic Lubrication Identify types of Slide Bearing & Journal Bearings Knowledge about Hydrostatic Bearings, EHL, Porous & Gas Bearings 									
Course Outcomes	 Upon Completion of the course student shall be able to: Identify the fundamentals of Effect of Pressure and Temperature on Viscosity, types of Viscometers. Friction. Detect the pressure distribution of hydrodynamic bearings analytically and experimentally. Investigate the life-cycle of a journal nearing and Idealized Slide Bearing 									
Unit:1	4. Design the Hydrostatic Beau Introduction to Tr		_, _ 5100				12 Hours			

Introduction, properties of lubrication, Regimes of Lubrication, Classification of Contacts, Lubrication Theories. Newton's Law of Viscous Forces, Effect of Pressure and Temperature on Viscosity, types of Viscometers. Friction, Wear, Wear Characteristics.

Lab Component: Viscosity measuring using Red-wood, Saybolt viscometers, Pin on disk wear testing.

Unit:2 **Hydrodynamic Lubrication** 12 Hours

Hydrodynamic Lubrication: Flow through Stationary Parallel Plates. Hagen's Poiseuille's Theory. Numerical Problems. Concept of Lightly Loaded Bearings, Petroff's Equation, Numerical Problems.

Hydrodynamic Bearings: Pressure Development Mechanism. Converging and Diverging Films and Pressure induced Flow. Reynolds's 2-D Equation with assumptions.

Lab Component: Determination of pressure distribution using journal bearing test rig.

Unit:3 Slide Bearing & Journal Bearings 12 Hours

Idealized Slide Bearing: Introduction, Idealized Slide Bearing with Fixed Shoe and Pivoted Shoes. Expression for Load Carrying Capacity. Location of Centre of Pressure, Numerical Problems.

Journal Bearings: Introduction to Idealized Full Journal Bearings. Load Carrying Capacity of Idealized Full Journal Bearings, Sommerfeld Number and its Significance. Comparison between Lightly Loaded and Heavily Loaded Bearings, Numerical Problems.

Unit:4 Hydrostatic Bearings, Porous & Gas Bearings 09 Hours

Hydrostatic Bearings: Types of Hydrostatic Lubrication Systems Expression for Discharge, Load Carrying Capacity, Flow Rate, Condition For Minimum Power Loss. Torque Calculations. Numerical Problems.

Porous & Gas Bearings: Introduction, Working Principle, advantages and disadvantages.

Magnetic Bearings: Introduction, Active Magnetic Bearings, Working Principle, advantages and disadvantages.

L. S. Srinath, 'Advanced Mechanics of solids', Tata Mc. Graw Hill,2003
 S. P. Timoshenko and J. N Gordier, 'Theory of Elasticity', Mc.Graw Hill

	International, 3rd edition, 1972
References	 Dr. Sadhu Singh, 'Theory of Elasticity', Khanna Publications, 1988 Martin H Sadd, 'Elasticity, Theory, Applications & Numericals', Elsevier. 2005
	3. Seetharamu & Govindaraju, 'Applied Elasticity', Interline Publishing 4. C.T. WANG Sc. D., 'Applied Elasticity', McGraw Hill Book Co.1953

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	0	PO_1
										(j)	1
											(k)
CO ₁											
CO ₂	V						V				
CO ₃	√										
CO ₄				V							

Course Code	Course Title	Course Type	L	Т	P	С	Hr		
M18MD2050	Mechanics of Composite Materials	НС	3	0	1	4	5		
Prerequisite: SOM	f, Composites materials, Advance mate	rials	In	terna		S	emester		
			Asse	essme	nt	Eı	nd Exam		
			50	Mark	.S	50) Marks		
Course	1. To teach the students to introd	duction of o	compos	ite ma	ateria	ıls			
Objectives	2. To perform micromechanical	and macro	mechai	nical	analy	ysis o	f a		
	lamina.	1		,					
	3. To introduce to various biaxia analysis of a laminate.	al strength t	theories	and	macr	o me	chanical		
	4. To provide a detailed knowled	dge of Stre	noth Th	eorie	s& a	nalyz	e the		
	macro mechanical analysis of	-	ngui in	icoric	occ u	naryz			
	5. To provide thorough knowled		fficient	of the	rma	l expa	ansion		
	and other thermal properties of								
Course	After completion of the course the st			to					
Outcomes	1. Describe the materials used for			0.1					
	2. Analyze the micro/macro med						_		
	3. Describe the various biaxial s mechanical analysis of a lami		ories an	ia ana	ıyze	macı	0		
	4. Determine the coefficient of t		ansion	and o	ther	thern	nal		
	properties of laminates	г							
Unit:1	Introduction to Composit	e Material	s		11 F	Iours			
Composite Mate	rials Definition-Matrix materials-pol	ymers-met	als-cera	mics	- R	einfo	rcements:		
Particles, whisker	s, inorganic fibers, metal filaments-	ceramic fi	bers- f	iber i	fabri	catio	n- natural		
composite wood,	Jute - Advantages and drawbacks of	of composi	ites ove	er mo	onoli	thic	materials.		
Mechanical proper	rties and applications of composites, P	articulate-I	Reinford	ced co	ompo	osite l	Materials,		
Dispersion-Strengt	thened composite, Fiber-reinforced co	mposites F	Rule of	mixtı	ıres-	Char	acteristics		
of fiber-Reinforced	d composites, Manufacturing fiber and	composite	s,						
Unit:2	Micro & macro Mechanical An	alysis of a	Lamina	a	12H	ours			
Micro Mechanica	al Analysis of a Lamina: Introduction	n, Evaluatio	on of th	e fou	r ela	stic 1	noduli by		
Rule of mixture.									
Macro Mechanica	s of a Lamina: Hooke's law for diffe	erent types	of mate	erials,	Nu	mber	of elastic		
Constants, Two − o	dimensional relationship of compliance	e and stiffn	ess mat	rix N	ımer	ical p	oroblems		
Unit:3	Strength Theories& a	analysis			11 F	Hours			
Biaxial Strength	Theories: Maximum stress theory, Ma	ximum stra	in theo	ry, Nı	ımer	ical p	roblems.		
Macro Mechanica	al Analysis of Laminate: Introduction	n, code, Ki	rchhoff	hypo	thes	is, CI	L T, A, B,		
and D matrices, Sp	pecial cases of laminates, Numerical pr	oblems.							
Unit:4	Thermal Analys	sis			11 F	Iours			
Assumption of Co	onstant Co-efficient of Thermal Expa	nsion (C.T	C.E.) - N	Modif	icati	on o	f Hooke's		
Law. Modification	n of Laminate Constitutive Equations	. Orthotrop	oic Lam	ina C	C.T.E	's. C	.T.E's for		
special Laminate Configurations Unidirectional, Off-axis, Symmetric Balanced Laminates, Zero									
C.T.E laminates, T	Thermally Quasi-Isotropic Laminates								
Text Books	1. Composite Science and En	gineering,	K. K.	Chaw	la S	pring	er Verlag		

	1998.
	2. Mechanics of composite materials, Autar K. Kaw CRC Press New York
References	1. Fiber Reinforced Composites, P. K. Mallick, Marcel Dekker,Inc
	2. Mechanics of Composite Materials, Robert M. Jones, McGraw Hill
	Kogakusha Ltd.1998
	3. Composite materials hand book, Meing Schwaitz," McGraw Hill book
	company.1984
	4. Principles of composite Material mechanics, Ronald F. Gibron.
	McGraw Hill international, 1994.
	5. Mechanics of Composite Materials and Structures, Madhujit
	Mukhopadhyay, UniversitiesPress 2009

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO_8	PO ₉	PO	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	10	PO ₁₁
										(j)	(k)
CO ₁	1										
CO ₂	1						$\sqrt{}$				
CO ₃	1										
CO ₄				$\sqrt{}$							

Course Code	Course Title	Course Type	L	T	P	С	Hr			
M18MD2061	Machine Tool Design	SC	4	0	0	4	4			
Prerequisite: M	letrology & Measurements, Strength of	Materials,	Inte	ernal	I	Sen	nester End			
Machine Design	, Theory of Machines		Asses	sme	nt Exam					
			50 N	/Iarks	S	50) Marks			
Course	1. To impart the fundamental notation	s of the ma	chine too	ols in	clud	ing th	e different			
Objectives	types, construction, applications and	d their techr	ological	capa	biliti	es.				
	2. To provide exposure to the syste	matic meth	ods for	solvi	ing t	he pr	oblems of			
	designing machine tools and their components by exploring the various design									
	aspects of machine tools elemen	its like tra	nsmissio	ns, s	struc	ures,	materials,			
	kinematics, dynamics and construct	ion of mach	ine tools	, etc.						
Course	After completion of the course the stud	dent will be	able to							
Outcomes	1. Analyze constructions and kinem	atic schema	ata of di	ffere	nt ty	pes o	f machine			
	tools.		-		_					
	2. Construct ray diagrams and speed s									
	3. Develop the conceptual design, analysis of design problems on the			mew	OFK	and	systematic			
	4. Apply the design procedures on di			hine	tool	and/c	r machine			
	tool components.	J1								
Unit:1	Machine Tool D	rive					12 Hours			
Machine Tool I transmission, M machine tools.	Drive: Working and auxiliary motion echanical transmission, General Requ	in machine irements of	Machin machine	ne to	ol d	rives, sign,	Hydraulic Layout of			
Regulation of S	Speed and Feed Rates: Aim of speed box, Design of feed box, Special cases ates	feed regula of gear box	tion, Stej k design,	pped Set s	regi stopp	ılatior ed reş	of speed, gulation of			
Unit:2	Design of Machine Too	l Structure					11 Hours			
Design of Mach	ine Tool Structure: Fundamentals of m	nachine tool	structure	s and	d the	ir requ	irements,			
<u> </u>	of machine tool structure, Static and dyna			n of	beds	and c	olumns,			
Design of housing	ng models, Techniques in design of macl	hine tool str	ucture.							
Unit:3	Design of Guide-ways and	-					11 Hours			
protecting device	e-ways and power Screws: Function a es for slide-ways, Design of power scre ndles, Design of spindles, Antifriction b	ws. Design	of Spind	les a	nd S	n of s pindle	lide-ways, Supports:			
Unit:4	Cooling & Exhaust	System					11 Hours			
Dynamics of Ma	achines Tools: General procedure of ass	sessing dyna	amic stab	ility	of E	ES, Cı	utting			
processing, close	ed loop system, Dynamic characteristics	0 1			•	nalysi	S.			
Text Books	1. Machine Tool Design by N.K 2. Machine Tool design Handbo				11.					

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	PO ₁
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	0	1
										(j)	(k)
CO ₁	$\sqrt{}$										
CO ₂							V				
CO ₃	$\sqrt{}$										
CO ₄						1					

Course Code	Course Title	Course Type	L	T	P	С	Hr			
M18MD2062	Mechatronics Product Design	SC	4	0	0	4	4			
Prerequisite: Autor	nation, CAD/CAM, Engg. Mathem	natics, Basic	Inte	erna		Seme	ester End			
Electronic	s, Mechatronics and Microprocesse	or	Asses	sme	ent	E	Exam			
			50 N	1ark	S	50	Marks			
Course Objectives	 To educate the student regard electrical and computer system Robots etc. To provide students with an unprocess, actuators, Sensors, transfer Microsystems and also the Actual Process. 	ms in the desi inderstanding ransducers, Si	gn of Cl of the M gnal Co	NC 1 Iech ndit	mach atroi ionin	ine too nic Des g, MEN	ls, ign MS and			
Course Outcomes	After completion of the course the student will be able to									
	 Appreciate multi-disciplinary nature of modern engineering systems and specifically mechanical engineering students to collaborate with Electrical, Electronics, Instrumentation and Computer Engineering disciplines. Analyze constructions and models of Engineering Systems, rotational, translation, elected mechanical, Hydraulic mechanical system. System Transfer functions. Develop the conceptual design of Mechatronic Product using available software CAD packages MATLAB and SIMULINK Apply the design procedures on different types of machine tool and/or machine tool components using mechatronics concept. 									
Unit:1	Introduction to Mo		ics cone	cpt.			11 Hours			
	chatronics: Systems and compone		es of ba	asic	elec	tronics				
logic, number system Microprocessors and	n logic gates, Sequence logic flip fand their applications: Microcomsignal conditioning processes, variety	lop system, J puter compu	K flip flo ater stru	op, I uctu	O-flip re/m	o flop. icro co	ontrollers,			
Unit:2	Sensors	}					12 Hours			
Sensors -sensors and	d transducers. Displacement, posit	ion proximity	y sensor	s, ve	elocit	y, force	e sensors.			
and hydraulic system	erature, liquid level and light sensons, Mechanical actuation system. in Mechatronic system.									
Unit:3	Principles of Electronic sys	tem commur	nication				11 Hours			
Principles of Electr	onic system communication, Int				Conv	erters:	Software			
and hardware principles and tools to build mechatronic systems. Basic system models mathematical models, mechanical and other system Building blocks. System models: Engineering Systems, rotational, translation, elected mechanical, Hydraulic mechanical system. System Transfer functions.										
Unit:4	First-second order sy	stem in serie	es				11 Hours			
First-second order	system in series: Design and sele	ction of Mecl	hatronics	s sys	stems	namel	y sensors			
line encoders and recontrollers with app	revolvers, stepper and servomotor lication to CNC system, robots, co t using available software CAD par	rs Ball screw onsumer elec	vs, soler tronics p	noid prod	s, lir ucts	ne actu etc, De	ators and			

Text Books	1. W.Bolton, Mechatronics, Addison Worley Longman Pvt. Ltd., India
	Brander, Delhi.
References	1. Mikel P Grooer, Automation Production System and CIMS, Prentice Hall of
	India Pvt. Ltd, New Delhi.

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO_8	PO ₉	PO ₁	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	0	PO ₁₁
										(j)	(k)
CO ₁	V										
CO ₂	1										
CO ₃	V										
CO ₄	V										

Course Code	Course Title	Course	L	T	P	C	Hr	
Course Coue	Course Title	Type						
M18MD2063	Rotor Dynamics	SC	4	0	0	4	4	
Prerequisite: Eng	gg. Mathematics, Turbo Machines, Tribo	ology,	Int	ernal	Semester			
FEM, Mechanica	l Vibrations		Asse	ssme	nt	Enc	l Exam	
			50 1	Mark	S	50	Marks	
Course	1. To enable the students to understan	nd Basic th	eory of	fluid	film	lubr	ication,	
Objectives	Derivation of generalized Reynolds	s equations,	Bounda	ary co	ondit	ions,		
	2. 2. Provide systematic basic know	ledge for	Rayleig	h's n	netho	d, S	todola's	
	method. Rotor Bearing System: Instability of rotors due to the effect of							
	hydrodynamic oil layer in the bearings,							
	3. To enable the students to ur	nderstand	General	l tur	boro	tor	system,	
	development of element transfer ma	atrices, the	matrix o	liffer	entia	l equ	ation	
	4. Formulate the General turboroto	or system,	general	lized	forc	es a	nd co-	
	ordinates system assembly element	matrices.						
Course	After completion of the course the stud	lent will be	able to					
Outcomes	1. Demonstrate the fundamentals of	Fluid Film	Lubrica	tion	& Fle	xible	Shafts.	
	2. Formulate the Critical Speed: Dun	kerley's me	thod.					
	3. Determine the Turbo rotor System	Stability b	y Transi	fer M	atrix			
	Formulation.							
	4. Derive the Turbo rotor System Sta			ment				
Unit:1	Fluid Film Lubrication &Flo	exible Shaf	ts			12 H	ours	

Fluid Film Lubrication: Basic theory of fluid film lubrication, Derivation of generalized Reynolds equations, Boundary conditions, Fluid film stiffness and Damping coefficients, Stability and dynamic response for hydrodynamic journal bearing, Two lobe journal bearings.

Stability of Flexible Shafts: Introduction, equation of motion of a flexible shaft with rigid support, Radial elastic friction forces, Rotary friction, friction Independent of velocity, friction dependent on frequency, Different shaft stiffness Constant, gyroscopic effects, Nonlinear problems of large deformation applied forces, instability of rotors in magnetic field.

Unit:2 Critical Speed 11Hours

Critical Speed: Dunkerley's method, Rayleigh's method, Stodola's method. Rotor Bearing System: Instability of rotors due to the effect of hydrodynamic oil layer in the bearings, support flexibility, Simple model with one concentrated mass at the centre.

Unit:3 Turbo rotor System Stability by Transfer Matrix
Formulation 11 Hours

Turbo rotor System Stability by Transfer Matrix Formulation: General turborotor system, development of element transfer matrices, the matrix differential equation, effect of shear and rotary inertia, the elastic rotors supported in bearings, numerical solutions.

Unit:4 Turbo rotor System Stability by Finite Element Formulation 11 Hours

Turbo rotor System Stability by Finite Element Formulation: General turborotor system, generalized forces and co-ordinates system assembly element matrices, Consistent mass matrix formulation, Lumped mass model, linearized model for journal bearings, System dynamic equations Fix stability analysis non dimensional stability analysis, unbalance response and

Transient analysi	S.
Blade Vibration	: Centrifugal effect, Transfer matrix and Finite element, approaches.
Text Books:	1. Principles of Lubrication, Cameron, Longman Publishing Group, 1986
	2. Non conservative problems of the Theory of elastic stability Bolotin,
	Macmillan, 1963
References:	1. Matrix Methods in Elasto Mechanics, Peztel, Lockie, McGraw-Hill,
	1963.
	2. Vibration Problems in Engineering, Timosenko , Oxford City Press, 2011
	3. The finite element method in engineering science, Zienkiewicz, McGraw-
	Hill, 1971

Program outcomes	PO ₁	PO_2	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	0	P
										(j)	O_1
											1
											(k)
CO ₁											
CO ₂	V										
CO ₃	√										
CO ₄	1										

Course Code	Course Title	Course	L	Т	P	С	Hr		
		Type							
M18MD2071	Advanced Machine Design	SC	4	0	0	4	4		
Prerequisite: TOE,	, TOP and DME-1 and 2		Int	Internal Semest					
			Asse	essme	nt	nt Exam			
			50	Mark	s 50 Marks				
Course	Knowledge of different	t modes of failu	res & fa	atigue	beh	avior of	materials		
Objectives	2. To identify the Life es	timation and stre	ess com	poner	ıt sul	ojected	to finite		
	and infinite life.								
	3. Introduction to fracture mechanics and stress intensity factor.								
	4. Understand different d	amage tolerant t	theories	used	to es	stimate	life and		
	Types of surface failur	es, contact stres	ses.						
Course	At the end of the course, the stu	dent will be able	e to						
Outcomes	 Classify and explain the 	art of design me	ethodol	ogy b	y ana	alysis ar	nd damage		
	tolerance methods.								
	2. Discuss an overview of	mechanical beha	avior wl	hich i	nclud	des tens	ile,		
	fatigue and creep.								
	3. Illustrate the micro mec	hanisms of brittl	le and d	uctile	frac	ture.			
	4. Examine the fatigue and	fracture behavi	or of m	ateria	ls.				
Unit:1	Unit:1 Introduction and fatigue behavior of materials 11 Hou								

Role of failure prevention analysis in mechanical design, Modes of mechanical failure, Review of failure theories for ductile and brittle materials including Mohr's theory and modified Mohr's theory, Numerical examples. Introductory concepts, High cycle and low cycle fatigue, Fatigue design models, Fatigue design methods, Fatigue design criteria, Fatigue testing, Test methods and standard test specimens, Fatigue fracture surfaces and macroscopic features, Fatigue mechanisms and microscopic features.

Unit:2 Stress-life (S-N) approach and strain-life (ε-N) approach

S-N curves, Statistical nature of fatigue test data, General S-N behavior, Mean stress effects, Different factors influencing S-N behavior, S-N curve representation and approximations, Constant life diagrams, Fatigue life estimation using S-N approach. Monotonic stress-strain behavior, Strain controlled test methods, Cyclic stress-strain behavior, Strain based approach to life estimation, Determination of strain life fatigue properties, mean stress effects, Effect of surface finish, Life estimation by S-N approach.

Unit:3 Linear elastic fracture mechanics & residual stresses: 11 Hours

LEFM concepts, Crack tip plastic zone, Fracture toughness, Fatigue crack growth, Mean stress effects, Crack growth life estimation. Definitions of types of fracture and failure, Introduction to stress intensity factor and strain energy release rate, stress intensity approach.

Residual Stress: Introduction, production of residual stresses & fatigue resistance, relaxation of residual stresses, measurement of residual stresses, stress intensity factors for residual stresses, applications.

Unit:4 **Fatigue from variable amplitude loading** 12 Hours
Spectrum loads and cumulative damage, Damage quantification and the concepts of Damage fraction

and accumulation	n, Cumulative damage theories, Load interaction and sequence effects, Cycle								
counting methods	Life estimation using stress life approach.								
Text Books	1. Metal Fatigue in Engineering, R. I. Stephens, A. Fatemi, R. R. Stephens, H.								
	Fuchs, John Wiley Newyork, 2 nd edition, 2001.								
	2. Failure of Materials in Mechanical Design, J. A. Collins, JWiley, Newyork,								
	1992.								
	3. Machine Design, R. L. Norton, Pearson Education India, 2000.								
References	1. Fatigue of Material, S. Suresh, Cambridge University Press, 1998.								
	2. Fundamentals of Metal Fatigue Analysis, J. A. Benantine, Prentice Hall,								
	1990.								
	3. Fatigue and Fracture, ASM Hand Book, Vol 19, 2002.								

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO_8	PO ₉	PO ₁₀	
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	PO_{11}
											(k)
CO ₁											
CO ₂	V										
CO ₃											
CO ₄											

Course Code	Course Title	Course Type	L	T	P	C	Hr
M18MD2072	Robotics and Its						
	Application	SC	4	0	0	4	4
Prerequisite: (CAD/CAM/CIM		In	iternal	I	Sem	nester End
_			Ass	essment	-		Exam
			50	Marks		5() Marks
Course	1. Learn the concepts of robot	representat	tion usi	ng conc	epts	of kir	nematics &
Objectives	mathematics.	•			•		
	2. Learn & understand the Ma	-	ntation,	Homog	eneo	us tran	sformation,
	forward and inverse Kinemat		c m :	. 1			. 1
	3. Learn basic methods & a	_	f Trajec	ctory pl	annı	ng: av	oidance of
	obstacles uninformed path sea 4. Learn the Image processing V		lycic im	age Acc	micit	ion	
Course	After Completion of the course st				quisit	.1011.	
Outcomes	Formulate the Mathematical in the second secon				nema	tics of	Robot
	2. Determine the Trajectory plan	-	01 110	300, 111			110001
	3. Understand the basic principal	_	e Vision	system	ıs, in	nage ac	quisition &
	image components.						
	4. Apply the knowledge to design		ots to pe	erform b	asic	operati	ons such as
TT 1: 4	pick & place line follower rol						10.11
Unit:1	Introduction to Robotic		-				12 Hours
	oduction: Basic Structure, Classi			nd Rob	otic	system	s –laws of
	t motions – work space, precision o						
	Rotary, prismatic, cylindrical & s					ition of	rigid body,
universal frame	s & fixed frames, Euler angle repre				S.		
Unit:2	Mathematical representation		Kinemat	tics of			12 Hours
N/L-414*1	Robo		e D	14	T /	1 4.	24.
	representation of Robots, I						
•	Homogeneous transformation, for						
-	Degeneracy, dexterity, transform	ation matrix	x for 3	K manı	pulat	or, pu	ma 560 &
SCARA manipu		<u> </u>					11.77
Unit:3	Trajectory p						11 Hours
	nning : avoidance of obstacles un			h, infori	med j	path se	arch, A* &
	bus algorithms with tactile sensors		ies				10.77
Unit:4	Machine Visio				<u> </u>		10 Hours
	on systems: Introduction – Image		_	•		•	Acquisition,
	– Sampling and Quantization – Ima	<u> </u>					
Text Books	1. Introduction to Robotics		-				
D - f	2nd edition, Pearson Educ			`			,
References	1. Industrial Robotics Tec Groover McGraw-Hill, U		rogramı	ınıng al	uu A	ърпса	uons, M.P.
	2. Machine Vision: Ramesh		achari K	asturi 1	Brain	G Sc	hunck Tata
	McGraw-Hill, 1991.	i vaiii, italigi			JI UIII	. G. 50	iioiion, iuu
	3. Robotics for Engineers,	Yoremkoren	, McGra	w-Hill,	USA	, 1987.	
	4. Robotics and Image Pr						
	1991.						

Program outcomes	PO ₁	PO_2	PO ₃	PO ₄	PO ₅	PO_6	PO ₇	PO_8	PO ₉	PO ₁	P
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	0	O_1
										(j)	1
											(k)
CO ₁											
CO ₂						V					
CO ₃						V					
CO ₄						V					

Course Code	Course Title	Course Type	L	T	P	C	Hr	
M18MD2073	Optimization in Engineering Design	SC	4	0	0	4	4	
Prerequisite: O	peration Research, Project Management	,	Int	ernal		Sen	nester End	
Optimization Tec	chniques		Asse	ssme	nt		Exam	
			50 N	Mark	ks 50 Marks			
Course	1. It aims at finding out Enginee	ring Design	Practic	e a	nd A	Applio	cations of	
Objectives	Optimization in Engineering Design							
	2. It provides the designer to , Design Variables and Design Constraints							
	3. It helps in solving the Gradient Base	ed Optimizati	ion Metl	ods	– Dı	ıal an	d Direct.	
	4. It gives an idea about the Manufacti	arability in O	ptimizat	ion l	Probl	ems		
Course	Upon Completion of the course studer	t shall be abl	e to:					
Outcomes	1. Identify the fundamentals of Engin	eering Desig	n Practio	ce.				
	2. Test the Optimum Design Problem							
	3. Detect the Gradient Based Optimiz							
	4. Investigate the Manufacturability in Optimization Problems, Design							
	Interpretation and Dynamic Programming.							
Unit:1	:1 Engineering Design Practice 12 Hour							
	ogian Dragtian Evolution of Design		T4	4:	4 - 1	<u> </u>		

Engineering Design Practice: Evolution of Design Technology, Introduction to Design and the Design Process, Design versus Analysis, Role of Computers in Design Cycle, Impact of CAE on Design, Numerical Modeling with FEA and Correlation with Physical Tests.

Applications of Optimization in Engineering Design: Automotive, Aerospace and General Industry Applications, Optimization of Metallic and Composite Structures, Minimization and Maximization Problems, MDO and MOO.

Unit:2 **Design Problem Formulation** 12 Hours

Optimum Design Problem Formulation: Types of Optimization Problems, The Mathematics of Optimization, Design Variables and Design Constraints, Feasible and Infeasible Designs, Equality and Inequality Constraints, Discrete and Continuous Optimization, Linear and Non Linear Optimization.

Optimization Theory – Fundamental Concepts, Global and Local Minimum, Gradient Vector and Hessian Matrix, Concept of Necessary and Sufficient Conditions, Constrained and Unconstrained Problems, Lagrange Multipliers and Kuhn Tucker Conditions.

Unit:3 Gradient Based Optimization Methods 11 Hours

Gradient Based Optimization Methods – Dual and Direct.

Optimization Disciplines: Conceptual Design Optimization and Design Fine Tuning, Combined Optimization, Optimization of Multiple Static and Dynamic Loads, Transient Simulations, Equivalent Static Load Methods. Internal and External Responses, Design Variables in Each Discipline.

Unit:4 **Manufacturability in Optimization Problems** 10 Hours

Manufacturability in Optimization Problems: Design For Manufacturing, Manufacturing Methods and Rules, Applying Manufacturing Constraints to Optimization Problems.

Design Interpretation: Unbound Problems, Over Constrained Problems, Problems with No of

Multiple Solutio	ns, Active and Inactive Constraints, Constraint Violations and Constraint Screening,							
Design Move Li	Design Move Limits, Local and Global Optimum.							
Dynamic Programming: Introduction, Multistage decision processes, Principle of optimality,								
Computational F	Procedure in dynamic programming, Initial value problem, Examples.							
Text Books	Engineering Optimization: Theory and Practice- S.S.Rao, John Wiley, 2009							
	2. Introduction to Optimum Design- Jasbir Arora, McGraw Hill, 2011.							
References	1. Optimization and Probability in System Engg - Ram, Van Nostrand.							
	2. Optimization methods - K. V. Mital and C. Mohan, New age International							
	Publishers, 1999.							
	3. Optimization methods for Engg. Design - R.L Fox, Addison – Wesley, 1971.							

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO_{10}	PO ₁₁
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)
CO ₁	√										
CO ₂	V										V
CO ₃											
CO ₄	√										

THIRD SEMESTER

Course Code	Course Title	Course Type	L	Т	P	С	Hr					
M18MD3010	Fatigue and Fracture	НС	3	1	0	4	E					
	Mechanics	1	0	4	5							
Prerequisite: E	Inter	nal	al Semester End									
	ment	ent Exam										
	arks	s 50 Marks										
Course	1. To enable the students to understand the Fundamental Concepts, Historical											
Objectives	perspective, Linear Elastic Fracture Mechanics.											
	2. Provide systematic basic knowledge for Crack-Tip-Opening Displacement, The											
	J Contour integral, Relationships Between J and CTOD,											
	3. To enable the students to understand Ductile Fracture, Cleavage, the Ductile-											
	Brittle Transition, and Intergranular Fracture.											
	4.Knowledge about the General Considerations, KIc Testing, K-R Curve Testing											
Course	After completion of the course the student will be able to											
Outcomes	1. Demonstrate the fundamentals of Stress Analysis of Cracks, Relationship											
	between K and G											
	2. Formulate the Elastic-Plastic Fracture Mechanics & Dynamic and Time-											
	Dependent Fracture											
	3. Determine the Fracture Mechanisms in Metals& Non Metals4Derive the Fracture Toughness, Testing of Metals & Non Metals											
Unit:1	4Derive the Fracture Toughn Fundamental		ı me	tais & No			Hours					
	Concepts: Introduction, Historica		Line	ear Elast	ic Frac							
	w of Fracture, Stress Concentrati											
	lease Rate, Instability and the R					_	•					
	G, Crack-Tip Plasticity, K-Contro			•			-					
	ction of Multiple Cracks.	Ź				,						
<u> </u>	Elastic-Plastic Fracture Me	chanics & Dy	nam	ic and		10.1						
Unit:2	Time-Depender	-				121	Hours					
Elastic-Plastic	Fracture Mechanics: Crack-Tip	o-Opening Dis	splac	ement, 7	Γhe J (Conto	ur integral,					
Relationships B	etween J and CTOD, Crack-Grow	vth Resistance	Cur	ves, Con	trolled	Fract	ure, Crack-					
Tip Constraint V	Under Large-Scale Yielding, Num	erical problem	ıs.									
Dynamic and	Fime-Dependent Fracture: Dyn	amic Fracture	and	Crack A	Arrest,	Effect	of fatigue					
on Creep Crack	Growth, Viscoelastic Fracture Me	echanics.										
Unit:3	Fracture Mechanisms in	Metals& Nor	ı Me	tals	11	Hours	}					
Fracture Mech	nanisms in Metals: Ductile Fract	ture, Cleavage	e, the	Ductile	-Brittle	e Tran	sition, and					
Intergranular Fr	acture.											
	anisms in Non-metals: Engineer	ing Plastics, C	Ceran	nics and	Ceram	ic Coı	mposites,					
Micro crack Toughening, Concrete and Rock.												
Unit:4	0 0											
Fracture Toughness Testing of Metals: General Considerations, KIc Testing, K-R Curve Testing,												
J Testing of M	etals, CTOD Testing, Dynamic a	and Crack-Ar	rest '	Toughne	ss, Fra	acture	Testing of					

Weldments, Testing and Analysis of Steels in the Ductile-Brittle Transition Region, Qualitative Toughness Tests, Numerical problems. Fracture Testing of Non-metals: Fracture Toughness Measurements in Engineering Plastics, Precracking and Other Practical Matters, Inter laminar Toughness of Composites, Ceramics. Text Books 1. Fracture Mechanics: Fundamentals and Applications by T.L. Anderson, CRC Press, Florida 1. Elementary References **Engineering** Fracture **Mechanics** by D. Broek. MartinusNijhoff. 2. The Practical Use of Fracture Mechanics by D. Broek, Kluwer Academic 3. Deformation and Fracture Mechanics of Engg. Materials by R. W. Hertzberg, John-Wiley & Sons. 4. Fracture and Fatigue Control in Structures: Applications of fracture mechanics by J.M. Barsom and S.T. Rolfe, ASTM International. 5. Mechanics and Mechanisms of Fracture: An Introduction by A. F. Liu, ASTM International.

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO_6	PO ₇	PO_8	PO ₉	PO ₁₀	PO ₁₁
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)
CO ₁	V										
CO ₂	√										
CO ₃	V										
CO ₄	√										

Course Code	Course Title Course L T P C Type											
M18MD3020	Modern Automotive System	4	0	0	4	4						
Prerequisite: IC E	ntern	al	S	emester								
	sessn	ment End Exam										
	50 Marks 50 Mar											
Course	1. To enable the students to understand Aerodynamic Shapes, drag forces f											
Objectives	small family cars											
	2. Provide systematic basic knowledge of Combustion fundamentals											
	combustion chamber design											
	3. To enable the students to understa	nd Design	n of	trans	smiss	ion	systems –					
	gearbox											
	4. Formulate the to understand the	basic prir	ciple	es of	He	at ex	changers,					
	application to design of cooling syst	em										
Course Outcomes	After completion of the course the stude											
	1. Demonstrate the fundamentals of E			Fuel	Inje	ction						
	2. Formulate design for both SI & C.	_										
	3. Determine the Transmission & Susp	-		ecion	Con	trol						
	4. Describe the Cooling & Exhaust System and Emission Control											
Unit:1	Body Shapes & Fuel Injec	ction				12 F	Hours					
Body Shapes: Aero	odynamic Shapes, drag forces for small fa	mily cars.		I								
Fuel Injection: Spi	ray formation, direct injection for single c	ylinder en	gines	s (bo	th SI	& C	I), and					
energy audit.												
Unit:2	Design of I.C. Engine)				12 F	Iours					
Design of I.C. Eng	ine I: Combustion fundamentals, combus	tion cham	ber c	lesig	n, cyl	inde	r head					
design for both SI &	& C. I. Engines.											
Design of I.C. Eng	ine II: Design of crankshaft, camshaft, co	onnecting	rod, j	pisto	n & p	oistor	rings for					
small family cars (r	max up to 3 cylinders).											
Unit:3	Transmission & Suspension	System					11 Hours					
Transmission Syst	em : Design of transmission systems – gea	arbox (ma	x of	4-spe	eds),	diffe	erential.					
Suspension Systen	a: Vibration fundamentals, vibration analy	sis (single	2 & t	wo d	egree	of f	reedom,					
	gine unbalance, application to vehicle sus											
Unit:4	Cooling & Exhaust Syst	em					10 Hours					
Cooling System: H	leat exchangers, application to design of c	ooling sys	tem	(wat	er co	oled)						
Emission Control :	Common emission control systems, measurements	surement of	of mi	ssion	ıs, ex	haus	t gas					
emission testing.												
Text Books	1. Design of Automotive Engines , - A Publishers, Moscow	.Kolchind	& V.	Dem	idov,	MIR						
	2. The motor vehicle, Newton steeds &Garratte- Iliffee& sons Ltd., London											
	3. I.C. Engines - Edward F Obert, Inte		ext b	ook	comp	oany.						
References	1. Introduction to combustion- Turns											
	2. Automobile Mechanic -,N.K.Giri, Khanna Publications, 1994											
	3. I.C. Engines -Maleev, McGraw Hill book company, 1976											

- 4. **Diesel Engine Design** -HeldtP.M.,Chilton company New York.
- 5. **Problems on design of machine elements** -V.M. Faires&Wingreen, McMillan Company., 1965
- 6. **Design of I.C.Engines** -John Heywood, TMH

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	PO ₁₁
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)
CO ₁	V										
CO ₂	V										
CO ₃	V										
CO ₄	V										

Course Code	Course Title	Course Type	L	T	P	С	Hr					
M18MD3030	Internship With Report RULO 0 0 6 6 12											
Prerequisite: Mechanical Vibrations, Automotive Engineering												
Course Objectives	 To give exposure to industrial activities. To learn various aspects of activities carried out in industry. To understand application of concepts of mechanical engineering in industry. To know various process and machines used to make a product. To gain overall idea about industry. 											
Course Outcomes	 S. To gain overall idea about industry. After completion of the course the student will be able to Explain various aspects of industry working principle and culture. Understanding of the respective company methods and process used to make a product. Explain the management philosophy and concept used in particular industry. Explain the activities of the particular industry and adopting of the concept for entrepreneurship. 											

Student should undergo internship for 21 days in one stretch or 15 days in two stretches at the end of the 3rd semester. After completion, submit the 20 page report on internship and give presentation which will be evaluated as per the university guidelines.

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO_6	PO ₇	PO_8	PO ₉	PO_{10}	PO_{11}
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)
CO ₁	V						1				
CO_2	V						V				
CO ₃							V				
CO ₄	V										

Course Code	Course Title	Course Type	L	T	P	C	Hr					
M18MD3040	Project Phase-I	HC	0	0	4	4	8					
Prerequisite: All	Prerequisite: All previous courses taught in earlier semesters											
Course	1. To identify the problem in real	1. To identify the problem in real time application and find out the										
Objectives	solution	solution										
	2. To make the students to conver	t their idea	s in t	o rea	ılity.							
	3. To develop the skill of writing,	documenta	ition	and	prese	entati	on					
Course	After completion of the course the stud	lent will be	able	to								
Outcomes	1. Identify the problems in the re	al time app	licat	ion.								
	2. Apply the knowledge to analyst	• •										
	3. Document the progression of the work and results.											
	4. Design the process/ product for simple applications.											

The student have to start project and select the problems which is relevant to an industry or in the society or any innovative ideas. In project phase-I student has to work for the literature work and problems has to be clearly defined at the end semester and present the progress of the work in two phases which will be evaluated. At the end of the semester the students have to submit the hard copy of the report which will be prepared as per the guidelines/format of the university. Semester end evaluation will be conducted for each student.

Program outcomes	PO_1	PO_2	PO_3	PO_4	PO_5	PO_6	PO_7	PO_8	PO ₉	PO_{10}	PO_{11}
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)
CO ₁	V						$\sqrt{}$				
CO ₂	V						V				
CO ₃											
CO ₄	V						V				

Course Code	Course Title	Course Type	L	T	P	C	Hrs./ Wk.
M18MD3050	MUSIC / DANCE / SPORTS / THEATER / YOGA	RULO	0	0	2	2	2

Note: Music, Dance, and Theater courses are offered by the School of Performing Arts, whereas the Sports and Yoga courses are offered by the Department of Physical Education. The students have to choose any **ONE** of these courses.

A. YOGA FOR HEALTH

Course Objectives:

Following are the Course Objectives.

- To prepare the students for the integration of their physical, mental and spiritual faculties;
- To enable the students to maintain good health;
- To practice mental hygiene and to attain higher level of consciousness;
- To possess emotional stability, self control and concentration; and
- To inculcate among students self discipline, moral and ethical values.

Course Outcomes:

On completion of the course learners will be able to:

- Practice yoga for strength, flexibility, and relaxation.
- Learn techniques for increasing concentration and decreasing anxiety
- Become self disciplined and self-controlled
- Improve physical fitness and perform better in studies
- Gain self confidence to face the challenges in the society with commitment to serve the society

Course Contents

Unit-I:

Yoga: Introduction, Tips from Sage Patanjali's Yoga Sutras

Surya Namaskara: 10 counts, 12 counts, 16 counts

Unit-II:

Asanas: Sitting- Vajrasana, Dandasana, Padmasana, Matsyasana, Ardha Matsyendrasana, Suptavajrasana, Paschimottasana, Bakasana, Simhasana, Shirasasana.

Asanas: Standing- Tadasana, Trikonasana, Parshwa konasana, Veerabadrasana, Parivrutta trikonasana.

Unit-III:

Asanas: Prone Position- Bhujangasana, Dhanurasana, Shalabhasana.

Asanas: Supine Position- Sarvangasana, Sethubandha sarvangasana, Halasana, Karnapeedasana.

Mudras- Dhyana mudra, Chinmaya mudra, Namaste mudra, Nasika mudra

Unit-IV:

Pranayams:- Ujjayi, Nadi Shodhana, Anuloma — Viloma, Basthrika, Bhramari, Sheethali

Dhyana & its types

Competition format, Rules and their interpretations

B. SPORTS (VOLLEYBALL)

Course Objectives:

- 1. To learn the rules, fundamental skills, and strategies of volleyball.
- 2. To develop skills in passing, setting, serving, spiking, and blocking.
- 3. To learn basic offensive and defensive patterns of play.
- 4. To develop a positive attitude towards volleyball as a lifetime sport and to improve physical fitness through participation in volleyball.

Course Outcomes:

On completion of the course learners will be able to:

- 1. Learn basic skills and knowledge associated with volleyball.
- 2. Apply these skills while playing volleyball and exhibit improved performance
- 3. Improve physical fitness and practice positive personal and lifestyle.
- 4. Gain an understanding of the value of sports in attaining wellness, maintaining good health and developing spirit of teamwork.

Course Contents:

Unit-I

- Introduction about Volleyball
- Players Stance, Receiving and passing
- The Volley (Overhead pass), The Dig (Underhand pass), Service Reception

Unit-II

- Service- Under Arm Service, Tennis Service, Side Arm Spin Service, Round Arm Service, High spin service, Asian serve / American serve (floating)
- Setting the ball- Set for attack, Back set, Jump set

Unit-III

- Smash/Spike- Straight smash, Body turn smash, Wrist outward smash, Wrist inward smash
- Block- Single block, Double block, Three-man block

• Rolls- Overhead pass & back rolling, One hand underhand pass with side rolling, Forward dive

Unit-IV

- Attack Combination, Defense Systems, Libero play
- Court marking, Rules and their interpretations and Duties of officials

C. SPORTS (BASKETBALL)

Course Objectives:

- 1. To learn the rules, fundamental skills, and strategies of Basketball
- 2. To develop technical skills in passing, in ball handling, individual offense, individual defense, rebounding, screen, team offense, team defense and fast break.
- 3. To learn basic offensive and defensive strategies of play.
- 4. To develop a positive attitude towards Basketball as a lifetime sport and to improve physical fitness through participation in Basketball.
- 5. To develop positive understanding and appreciation of the basketball game.

Course Outcomes:

On completion of the course learners will be able to:

- 1. Learn basic skills and knowledge associated with basketball.
- 2. Apply these skills while playing basketball and exhibit improved performance
- 3. Improve physical fitness and practice positive personal and lifestyle.
- 4. Gain an understanding of the value of sports in attaining wellness, maintaining good health and developing spirit of teamwork.

Course Contents:

Unit-I

- Basketball: Introduction
- Grip; Player stance- Triple threat stance and Ball handling exercises
- Passing (Two hand/one hand)- Chest pass, Bounce Pass, Over head pass, Underhand pass, Hook Pass, Behind the back pass, Baseball pass, Side arm pass and passing in running.
- Receiving-Two Hand receiving, One hand receiving, Receiving in stationary position, Receiving while jumping, Receiving while running.

Unit-II

- Dribbling- How to start dribble, How to stop dribble, High / Low dribble with variations
- Shooting- Layup shot and its variations, One hand set shot, One hand jump shot, Free throw, Hook shot, Tip-in shot.

• Stopping- Stride/Scoot, Pivoting and Faking /Feinting footwork.

Unit-III

- Rebounding- Defensive rebound, Offensive rebound, Box out, Rebound Organization.
- Individual Defensive- Guarding the man with the ball and without the ball.
- Offensive drills, Fast break drills, Team Defense/Offense, Team Tactics

Unit-IV

• Court marking, Rules and their interpretations

D. SPORTS (FOOTBALL)

Course Objectives:

- 1. To learn the rules, fundamental skills, and strategies of football.
- 2. To develop skills in passing, receiving, controlling the ball, dribbling, shielding, shooting, tackling, beating a defender and heading in football.
- 3. To learn basic offensive and defensive patterns of play
- 4. To use different parts of the body in utilizing the above skills while playing football
- **5.** To develop a positive attitude towards football as a lifetime sport and to improve physical fitness through participation in football.

Course Outcomes:

On completion of the course learners will be able to:

- 1. Learn basic skills and knowledge associated with football.
- 2. Apply these skills while playing football and exhibit improved performance
- 3. Use the knowledge and understanding to perform, refine and adapt the above skills and related skills with precision, accuracy, fluency and clarity in any situation.
- 4. Improve physical fitness and practice positive personal and lifestyle.
- 5. Gain an understanding of the value of sports in attaining wellness, maintaining good health and developing spirit of teamwork.

Course Content:

Unit-I

Football: Introduction

Kicks- Inside kick, Instep kick, Outer instep kick, Lofted kick, Chipping, Volley, Half Volley

Trapping-Trapping rolling the ball, Trapping bouncing ball with sole

Unit-II

• Dribbling- With instep and outer instep of the foot.

- Heading- From standing, running and jumping.
- Feinting- With the lower limb and upper part of the body.

•

Unit-III

- Tackling- Simple tackling, Slide tackling.
- Throw-in- Standing and Sliding
- Goal Keeping- Collection of balls, Ball clearance, throwing and deflecting.

Unit-IV

• Ground marking, Rules and their interpretations

E. SPORTS (TRACK AND FIELD)

Course Objectives:

- 1. To teach students the skilled techniques in sprints, relay running, hurdles, long jump, high jump, and shot put and practice them.
- 2. To develop competence among students in demonstrating all the techniques covered in the course.
- 3. To make students understand some of the scientific and empirical principles and their rationale underlying the development of skilled performance.
- 4. To inculcate among students the habit of team work and cooperative learning and develop competence in detecting / correcting technique errors.
- 5. To develop a positive attitude towards sports in general and athletics in particular and to improve physical fitness through participation in various athletic games / sports activities.

Course Outcomes:

On completion of the course learners will be able to:

- 1. Display competencies in executing basic techniques and skills associated with select track and field events.
- 2. Develop basic skills and techniques to improve one's running posture and take-off position for different jumps.
- 3. Learn regular practice of select track and field events and improve physical fitness
- 4. Appreciate track and field events by applying sports science knowledge to explain the execution of the events.

Course Content:

Unit-I

Athletics: Introduction

Track Events - Steeple Chase, Race Walking, Middle and Long distance races

Race walking - Technique, Faults and Officiating.

Middle and Long distance races – Technique and Training

Unit-II

Jumping Events - High Jump and Triple Jump: Basic Skills and techniques High Jump - Straddle Roll & Flop Technique, Approach, Take-off, Technique in the air, Clearance over the bar & Landing

Triple Jump – Hop, Step and Jump Technique, Approach, Take-off & Landing

Unit-III

Throwing Events - Discus Throw and Hammer Throw: Basic Skills and techniques Discus Throw - Standing and Rotatory techniques, Grip, Stance, Rotation Technique, Power stance, Release and Reverse (Follow through)

Hammer Throw - Grip, Swings, Rotation foot work, Release and Follow through

Unit-IV

Rules, Officiating and Marking - Ground / Sector Marking, Interpretation of Rules.

Reference Books

(Athletics Part-I and Athletics Part-II)

- 1. Arthur E. Ellison (ed) (1994). Athletic Training and Sports Medicine.
- 2. Ballisteros, J.M. (1998). Hurdles Basic Coaching Manual, IAAF.
- 3. Bosen K.O. (1993). Teaching Athletics Skills and Technique.
- 4. Bosen K.O. (1990). Study Material on Hurdles for the Regular Course Students.
- 5. Doherty K. (1995). Track and Field Omni book.
- 6. Martin, David E. Peter N. Coe (1991). Training Distance Runner.
- 7. Howard S. (1981). Science of Track and Field Athletics.
- 8. Briggs Graeme (1987). "Track and field coaching Manual", Australian Track and Field Coaches Association. Rothmans Foundation National Sports Division.
- 9. Carr, Gerry (1999). "Fundamentals of Track and Field. Track Athletics 1 Title G.V. 1060 5.e. 368.
- 10. I.A.A.F. Level-II (2001). Text Book on Jumping Event.
- 11. Jarver, Jesse (1987). "The Jumps", Track and Field Coaching Manual Australia.

F. DRAMATICS

Pre-requisites: Students with background in Theatre Arts/ Keen interest in Dramatics.

Course Objectives:

- •To imbibe the acting skills.
- •To understand the broader applications of theatre studies in allied arts forms.
- •To be able to use body language for better communication.
- Students shall also be able to understand voice modulation and Navarasas.

Course Outcomes:

On successful completion of this course, students should be able to:

- Freely express improvisation in non-verbal communication.
- Shall hone good acting skills and be able to emote better.
- Be able to put up a theatre act and play a key role.
- Be able to differentiate good acting and understand the importance of good lyrics, stage crafting, music, dance, costume and lighting.

Course Content:

UNIT - 1

Working on Body:

Body and its analysis. Understanding physical abilities (Anga, Pratyanga and Upanga). Challenges of the body. Using body as metaphor and language. The class's bodies as a collective, an ensemble, a collaborative team.

UNIT - 2

Sound and Movement:

Awareness of creating sound patterns, voice modulations, rhythm in speech and diaologues. Understanding the rhythm and patterns of movements like walking, framing, shaping, primitive and animal movements.

UNIT - 3

Characterization and Improvisation:

Observation of people around. Getting into the role and living it. Developing a character from establishment (pace and rhythm). Improvisation techniques of body and mind.

UNIT - 4

Group work and Production:

Develop a theme, concept or a play and include all the theatre skills, stage craft, costuming and put up an act. Choosing theme and characters.

Reference Books:

- 1. All about Theatre Off stage Chris Hogget.
- 2. Rangadalli Anataranga K V Subbanna
- 3. The Indian Theatre Hemendranath Das Gupta.
- 4. A Practical handbook for an Actor Milisa Bruder, ee Milchel Cohn, Madeleine Oliek et al, Zigler Publisher.

G. INDIAN CLASSICAL DANCE FORMS (Bharathanatyam, Kuchipudi ,Mohiniyattam)

Prerequisites: Background of classical dance training or any other dance forms.

Note: Non-classical dancers can also join.

Course Objectives:

- To develop an understanding about the Indian classical dance forms and its universal application.
- To be able to understand the fine nuances of Classical dance.
- To understand the importance of health through Indian classical dance, strengthen the body capacity.
- To understand mythology and its characters in Indian classical dance form through lessons of Abhinaya.

Course Outcomes:

- To be able to identify and appreciate the classical dance forms.
- To be able to execute basics of Adavus with finesse.
- To be able to express through abhinaya.
- To be able to perform to perform the fundamentals in the chosen dance form.

Course Content:

Unit 1

An introduction to Indian classical dance forms: Bharatanatyam, Kuchipudi, Mohiniyattam.

Unit 2

Learning of Fundamentals: Exercises and Adavus- I (Bharathanatyam, Kuchipudi, Mohiniyattam).

Unit 3

Adavus –II (Bharathanatyam, Kuchipudi, Mohiniyattam)

Unit 4

Learn a basic composition in the chosen dance form.

Reference Books:

- 1. Indian classical dance forms –U S Krishna Rao, U K Chandrabhaga Devi
- 2. Classical Dances Sonal Mansingh, Avinash Parischa
- 3. Kuchipudi Sunil Kothari
- 4. Bharatanatyam An in depth study- Saroja vydyanathan
- 5. Mohiniyattam Bharathi Shivaji

H. PERCUSSION INSTRUMENT (TABLA AND MRIDANGAM)

Pre-requisites: Students with background in Percussion instruments and knowledge of Rhythm/ Keen interest in studying Mridagam / Tabala.

Course Objectives:

- •To understand the Rhythmology.
- •To understand the importance of Laya, Taala.
- •To be able to understand the fine finger techniques of playing the instrument.

Course Outcomes:

On successful completion of this course, students should be able to:

- To be able to set instrument to Sruthi.
- To be able to play the fundamentals on instrument.
- To be able to learn and perform a particular taala.

Course Content:

UNIT 1

- 1. Introduction to Musical Instruments
- 2. Percussion Instruments
- 3. Mridangam and its History

UNIT 2

- 1. Introduction to Tala System
- 2. Definitions of 5 jaathis and their recitation
- 3. Adi Talam and its various forms
- 4. Definitions and recitation of different gathis

UNIT 3

- 1. Tisra Jaathi
- 2. Khanda Jaathi
- 3. Misra jaathi
- 4. Sankeerna Jaathi

UNIT 4

- 1. Learning of Jathi Formation
- 2. Basic jathis
- 3. Jathis for Dance forms
- 4. Some Basic Definitions of Korvai, Teermanam etc.,

Reference Books:

- 1. Mridangam- An Indian Classical Percussion Drum Shreejayanthi Gopal
- 2. Theory and practice of Tabala Sadanand Naimpally.
- 3. Theory and practice of Mridangam Dharmala Rama Murthy

$4. \ \ \, The \ Art \ of the \ Indian \ Tabala - Srdjan \ Beronja.$

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	PO ₁₁
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)
CO ₁								$\sqrt{}$			$\sqrt{}$
CO ₂											$\sqrt{}$
CO ₃											
CO ₄								V			

FOURTH SEMESTER

Course Code	Course Title	Course Type	L	T	P	C	Hr				
M18MD4010	Project/Dissertation	HC	0	0	16	16					
Prerequisite: All	Prerequisite: All previous courses taught in earlier semesters										
Course	1. To identify the problem in real time application and find out the solution										
Objectives	2. To make the students to convert their ideas in to reality.										
ů	3. To develop the skill of writing, docu	3. To develop the skill of writing, documentation and presentation.									
Course	After completion of the course the stud	lent will be	able	to							
Outcomes	1. Identify the problems in the real tir	ne applicati	on.								
	2. Apply the knowledge to analyze the problem.										
	3. Document the progress of the work and results.										
	4. Design the process/ product for sim	nple applica	tions	S.							

The student have to continue the project which he has started the problems in 3rd Sem from an industry or in the society or any innovative ideas. Student has to work for the solution or converting their ideas into product and present the progress of the work in two phases which will be evaluated. At the end of the semester the students have to submit the hard copy of the report which will be prepared as per the guidelines/format of the university. Semester end evaluation and vivo-voce will be conducted for each student.

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO_{10}	PO ₁₁
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)
CO ₁							$\sqrt{}$				$\sqrt{}$
CO ₂							V				V
CO ₃							1				$\sqrt{}$
CO ₄							V				

Course Code	Course Title	Course Type	L	T	P	С	Hr			
M18MD4020	MOOC/ SWAYAM/ On line									
	program	RULO	4	0	0	4				
Prerequisite: All pre	evious courses taught in earlier semester	·s								
Course Objectives	1. To provide an affordable and flexible way to learn new skills,									
	2. To advance the career									
	3. To deliver quality educational e	experiences	at sc	ale						
Course Outcomes	After completion of the course the stud	dent will be	able	to						
	 Understand the advanced technologies through an expert online Apply newest technologies to mechanical applications 									

Note: Students shall choose to take up any online course of four credits as guided by the school or shall have to undergo internship of four weeks duration, the details of which are provided here under.

MOOC/ SWAYAM:

Globally, MOOC (Massive Open Online Course) platforms are gaining much popularity. Considering the popularity and relevance of MOOCs, Government of India has also launched an indigenous platform, SWAYAM. SWAYAM (Study Webs of Active Learning for Young Aspiring Minds) is basically an integrated MOOCs platform for distance education that is aimed at offering all the courses from school level (Class IX) to post-graduation level. The platform has been developed collaboratively by MHRD (Ministry of Human Resource Development) and AICTE (All India Council for Technical Education) with the help of Microsoft and is capable of hosting 2,000 courses.

A student shall register and successfully complete any of the courses available on SWAYAM.

Student shall inform the MOOC/SWAYAM coordinator of the school about the course to which he/she has enrolled. The minimum duration of the course shall be not less than 40 hours and of 4 credits. The student should submit the certificate issued by the SWAYAM to the MOOC/SWAYAM coordinator of the school, the grades obtained in the course shall be forwarded to concerned authority of the University.

List of some MOOC Centre:

- 1. Edx
- 2. Coursera
- 3. NPTEL
- 4. Swayam
- 5. Khan academy
- 6. Udacity

- 7. Udemy
- 8. Stanford online
- 9. WizIq

Program outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO_{10}	PO ₁₁
Course outcomes	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)
CO ₁										$\sqrt{}$	$\sqrt{}$
CO ₂										$\sqrt{}$	

Career Development and Placement

Having a degree will open doors to the world of opportunities for you. But Employers are looking for much more than just a degree. They want graduates who stand out from the crowd and exhibit real life skills that can be applied to their organizations. Examples of such popular skills employers look for include:

- 1. Willingness to learn
- 2. Self motivation
- 3. Team work
- 4. Communication skills and application of these skills to real scenarios
- 5. Requirement of gathering, design and analysis, development and testing skills
- 6. Analytical and Technical skills
- 7. Computer skills
- 8. Internet searching skills
- 9. Information consolidation and presentation skills
- 10. Role play
- 11. Group discussion, and so on

REVA University therefore, has given utmost importance to develop these skills through variety of training programs and such other activities that induce the said skills among all students. A full-fledged Career Counseling and Placement division, namely Career Development Center (CDC) headed by well experienced senior Professor and Dean and supported by dynamic trainers, counselors and placement officers and other efficient supportive team does handle all aspects of Internships and placements for the students of REVA University. The prime objective of the CDC is to liaison between REVA graduating students and industries by providing a common platform where the prospective employer companies can identify suitable candidates for placement in their respective organization. The CDC organizes pre-placement training by professionals and also arranges expert talks to our students. It facilitates students to career guidance and improve their employability. In addition, CDC forms teams to perform mock interviews. It makes you to enjoy working with such teams and learn many things apart from working together in a team. It also makes you to participate in various student clubs which helps in developing team culture, variety of job skills and overall personality.

The need of the hour in the field of Machine Design is not only the knowledge in the subject, but also the skill to do the job proficiently, team spirit and a flavour of innovation. This kept in focus, the CDC has designed the training process, which will commence from second

semester along with the curriculum. Special coaching in personality development, career building, English proficiency, reasoning, puzzles, and communication skills to every student of REVA University is given with utmost care. The process involves continuous training and monitoring the students to develop their soft skills including interpersonal skills that will fetch them a job of repute in the area of his / her interest and march forward to make better career. The School of Mechanical Engineering also has emphasised subject based skill training through lab practice, internship, project work, industry interaction and many such skilling techniques. The students during their day to day studies are made to practice these skill techniques as these are inbuilt in the course curriculum. Concerned teachers also continuously guide and monitor the progress of students.

The University has also established University-Industry Interaction and Skill Development Centre headed by a Senior Professor & Director to facilitate skill related training to REVA students and other unemployed students around REVA campus. The center conducts variety of skill development programs to students to suite to their career opportunities. Through this skill development centre the students shall compulsorily complete at least two skill / certification based programs before the completion of their degree. The University has collaborations with Industries, Corporate training organizations, research institutions and Government agencies like NSDC (National Skill Development Corporation) to conduct certification programs. REVA University has been recognised as a Centre of Skill Development and Training by NSDC (National Skill Development Corporation) under Pradhan Mantri Kaushal Vikas Yojana.

The University has also signed MOU's with Multi-National Companies, research institutions, and universities abroad to facilitate greater opportunities of employability, students' exchange programs for higher learning and for conducting certification programs.