

SCHOOL OF CIVIL ENGINEERING

HANDBOOK

M. Tech. in Construction Technology and Management

2020-22

Rukmini Knowledge Park, Kattigenahalli, Yelahanka, Bangalore - 560 064 Phone No: +91-080-46966966

Rukmini Educational Charitable Trust

www.reva.edu.in

Chancellor's Message

"Education is the most powerful weapon which you can use to change the world."

- Nelson Mandela.

There was a time when survival depended on just therealization of physiological needs. We are indeed privileged to exist in a time when 'intellectual gratification' has become indispensable. Information is easily attainable for the soul that is curious enough to go look for it. Technological boons enable information availability anywhere anytime. The difference, however, lies between those who look for information and those who look for knowledge.

It is deemed virtuous to serve seekers of knowledge and as educators it is in the ethos at REVAUniversity to empower every learner who chooses to enter our portals. Driven by our founding philosophy of 'Knowledge is power', we believe in building a community of perpetual learners by enabling them to look beyond their abilities and achieve what they assumed impossible.

India has always been beheld as a brewing pot of unbelievable talent, acute intellect and immense potential. All it takes to turn those qualities into power is a spark of opportunity. Being at a University is an exciting and rewarding experience with opportunities to nurture abilities, challenge cognizance and gain competence.

For any University, the structure of excellence lies in the transitional abilities of its faculty and its facility. I'm always in awe of the efforts that our academic board puts in to develop the team of subject matter experts at REVA. My faculty colleagues understand our core vision of empowering our future generation to be ethically, morally and intellectually elite. They practice the art of teaching with a student-centric and transformational approach. The excellent infrastructure at the University, both educational and extracurricular, magnificently demonstrates the importance of ambience in facilitating focused learning for our students.

A famous British politician and author from the 19th century - Benjamin Disraeli, once said 'A University should be a place of light, of liberty and of learning'. Centuries later this dictum still inspires me and I believe, it takes team-work to build successful institutions. I welcome you to REVA University to join hands in laying the foundation of your future with values, wisdom and knowledge.

Dr. P. Shyama Raju The Founder and Hon'ble Chancellor, REVA University

Vice-Chancellor's Message

The last two decades have seen a remarkable growth in higher education in India and across the globe. The move towards inter-disciplinary studies and interactive learning have opened up several options as well as created multiple challenges. India is at a juncture where a huge population of young crowd is opting for higher education. With the tremendous growth of privatization of education in India, the major focus is on creating a platform for quality in

knowledge enhancement and bridging the gap between academia and industry.

A strong believer and practitioner of the dictum "Knowledge is Power", REVA University has been on the path of delivering quality education by developing the young human resources on the foundation of ethical and moral values, while boosting their leadership qualities, research culture and innovative skills. Built on a sprawling 45 acres of green campus, this 'temple of learning' has excellent and state-of-the-art infrastructure facilities conducive to higher teaching-learning environment and research. The main objective of the University is to provide higher education of global standards and hence, all the programs are designed to meet international standards. Highly experienced and qualified faculty members, continuously engaged in the maintenance and enhancement of student-centric learning environment through innovative pedagogy, form the backbone of the University.

All the programs offered by REVA University follow the Choice Based Credit System (CBCS) with Outcome Based Approach. The flexibility in the curriculum has been designed with industryspecific goals in mind and the educator enjoys complete freedom to appropriate the syllabus by incorporating the latest knowledge and stimulating the creative minds of the students. Bench marked with the course of studies of various institutions of repute, our curriculum is extremely contemporary and is a culmination of efforts of great think-tanks - a large number of faculty members, experts from industries and research level organizations. The evaluation mechanism employs continuous assessment with grade point averages. We believe sincerely that it will meet the aspirations of all stakeholders – students, parents and the employers of the graduates postgraduates of Reva University.

At REVA University, research, consultancy and innovation are regarded as our pillars of success. Most of the faculty members of the University are involved in research by attracting funded projects from various research level organizations like DST, VGST, DBT, DRDO, AICTE and industries. The outcome of the research is passed on to students through live projects from industries. The entrepreneurial zeal of the students is encouraged and nurtured through EDPs and EACs. REVA University has entered into collaboration with many prominent industries to bridge the gap between industry and University. Regular visits to industries and mandatory internship with industries have helped our students become skilled with relevant to industry requirements. Structured training programs on soft-skills and preparatory training for competitive exams are offered here to make students more employable. 100% placement of eligible students speaks the effectiveness of these programs. The entrepreneurship development activities and establishment of "Technology Incubation Centers" in the University extend full support to the budding entrepreneurs to nurture their ideas and establish an enterprise.

With firm faith in the saying, "Intelligence plus character –that is the goal of education" (Martin Luther King, Jr.), I strongly believe REVA University is marching ahead in the right direction, providing a holistic education to the future generation and playing a positive role in nation building. We reiterate our endeavor to provide premium quality education accessible to all and an environment for the growth of over-all personality development leading to generating "GLOBAL PROFESSIONALS".

Welcome to the portals of REVA University!

Dr.M. Dhanamjaya Vice Chancellor, REVA University

Director's Message

The M. Tech in Construction Technology and Management is designed keeping in view future developments, both at national and global levels.

Construction technology and management are interlinked with each other. A construction engineer knows everything what that can be helpful build plans and to reshape an existing design. Construction industry has developed very much and has great importance in every society. A construction engineer does all efforts and use creative mind to build an architect. With the help of project

management software and mobile technology, an engineer uses his personal experience and knowledge to plan. Technology is playing an important role in delivering quality service to the consumer according to his/ her expectations level. If someone is interested but have no clear vision what to do and what not do than he/ she should get help from construction technology and management course to get confidence and practical to get opportunities and chances to design something.

Designing, planning, construction, and management of infrastructures shows the actual potential of a construction engineer. Doing practice on infrastructures such as highways, bridges, airports, railroads, buildings, dams, and utilities shows the worth and creative approach of an expert engineer. People can help for any type of ideas before constructing their homes and other type of architectures. Project manager uses 3D and 4D software to build architectures and houses for the people. Construction Costs Analysis helps a professional to make plans on behalf of available resources and delay the less important items to accomplish tasks early. The construction industry is experiencing technological revolution to make unique and creative plans. Taking more and more interest by the new generations means creating much opportunities and potentials for newbies. People should take admissions to learn to constrictions related courses and professional degrees to become professionals and best engineers

- The benefits of choosing this Programme are:
- Flexibility to choose various fields upon post-graduation.
- Opportunity to work on live problems.
- Opportunity to work on latest technologies.
- Opportunity for designers & planner to plan & design live projects.

I am sure the students choosing M Tech in Construction Technology and Management in REVA University will enjoy the curriculum, teaching and learning environment, the vast infrastructure and the experienced teachers involvement and guidance. The cirruculum caters to and has relevance to local, regional, national, global developmental needs. We will strive to provide all needed comfort and congenial environment for their studies. Maximum number of courses are integrated with cross cutting issues with relevant to professional ethics, Gender, human values, environment and Sustainability. We will strive to provide all needed comfort and congenial environment for their studies. I wish all students pleasant stay in REVA and grand success in their career.

Dr. Y. Ramalinga Reddy Director School of Civil Engineering,

CONTENTS

Sl. No.	Particulars	Page No.
1	Message from the Hon'ble Chancellor	2
2	Message from the Vice- Chancellor	3
3	Message from Director	4
4	Rukmini Educational Charitable Trust	6
5	About REVA University	7
	Vision, Mission, Objectives	9
6	About School of Civil Engineering Vision Mission Advisory Board BoS	10
7	Programme Overview Programme Educational Objectives Programme Outcomes Programme Specific Outcomes	13
9	Regulations Governing M.Tech. Programmes	16
10	Program Scheme- M. Tech. (Construction Technology and Management)	29
11	Curriculum- M. Tech. (Construction Technology and Management)	33

RUKMINI EDUCATIONAL CHARITABLE TRUST

It was the dream of late Smt. Rukmini Shyama Raju to impart education to millions of underprivileged children as she knew the importance of education in the contemporary society. The dream of Smt. Rukmini Shyama Raju came true with the establishment of Rukmini Educational Charitable Trust (RECT), in the year 2002. Rukmini Educational Charitable Trust (RECT) is a Public Charitable Trust, set up in 2002 with the objective of promoting, establishing and conducting academic activities in the fields of Arts, Architecture, Commerce, Education, Engineering, Environmental Science, Legal Studies, Management and Science & Technology, among others. In furtherance of these objectives, the Trust has set up the REVA Group of Educational Institutions comprising of REVA Institute of Technology & Management (RITM), REVA Institute of Science and Management (RISM), REVA Institute of Management Studies (RIMS), REVA Institute of Education (RIE), REVA First Grade College (RFGC), REVA Independent PU College at Kattigenahalli, Ganganagar and Sanjaynagar and now REVA University. Through these institutions, the Trust seeks to fulfill its vision of providing world class education and create abundant opportunities for the youth of this nation to excel in the areas of Arts, Architecture, Commerce, Education, Engineering, Environmental Science, Legal Studies, Management and Science & Technology.

Every great human enterprise is powered by the vision of one or more extraordinary individuals and is sustained by the people who derive their motivation from the founders. The Chairman of the Trust is Dr. P. Shyama Raju, a developer and builder of repute, a captain of the industry in his own right and the Chairman and Managing Director of the DivyaSree Group of companies. The idea of creating these top notched educational institutions was born of the philanthropic instincts of Dr. P. Shyama Raju to do public good, quite in keeping with his support to other socially relevant charities such as maintaining the Richmond road park, building and donating a police station, gifting assets to organizations providing accident and trauma care, to name afew.

The Rukmini Educational Charitable Trust drives with the main aim to help students who are in pursuit of quality education for life. REVA is today a family of ten institutions providing education from PU to Post Graduation and Research leading to PhD degrees. REVA has well qualified experienced teaching faculty of whom majority are doctorates. The faculty is supported by committed administrative and technical staff. Over 13,000 students study various courses across REVA's three campuses equipped with exemplary state-of-the-art infrastructure and conducive environment for the knowledge driven community.

ABOUT REVA UNIVERSITY

REVA University has been established under the REVA University Act, 2012 of Government of Karnataka and notified in Karnataka State Gazette No. 80 dated 27thFebruary, 2013. The University is empowered by UGC to award degrees any branch of knowledge under Sec.22 of the UGC Act. The University is a Member of Association of Indian Universities, New Delhi. The main objective of the University is to prepare students with knowledge, wisdom and patriotism to face the global challenges and become the top leaders of the country and the globe in different fields.

REVA University located in between Kempegowda International Airport and Bangalore city, has a sprawling green campus spread over 45 acres of land and equipped with state-of-the-art infrastructure that provide conducive environment for higher learning and research. The REVA campus has well equipped laboratories, custom-built teaching facilities, fully air-conditioned library and central computer centre, the well planned sports facility with cricket ground, running track & variety of indoor and outdoor sports activities, facilities for cultural programs. The unique feature of REVA campus is the largest residential facility for students, faculty members and supportive staff.

REVA consistently ranked as one of the top universities in various categories because of the diverse community of international students and its teaching excellence in both theoretical and technical education in the fields of Engineering, Management, Law, Science, Commerce, Arts, Performing Arts, and Research Studies. REVA offers 28 Undergraduate Programmes, 22 Full- time and 2 Part-time Postgraduate Programmes, 18 Ph. D Programmes, and other Certificate/ Diploma/Postgraduate Diploma Programmes in various disciplines.

The curriculum of each programme is designed with a keen eye for detail by giving emphasis on hands-on training, industry relevance, social significance, and practical applications. The University offers world-class facilities and education that meets global standards.

The programs being offered by the REVA University are well planned and designed after detailed study with emphasis with knowledge assimilation, applications, global job market and their social relevance. Highly qualified, experienced faculty and scholars from reputed universities / institutions, experts from industries and business sectors have contributed in preparing the scheme of instruction and detailed curricula for this program. Greater emphasis on practice in respective areas and skill development to suit to respective job environment has been given while designing the curricula. The Choice Based Credit System and Continuous Assessment Graded Pattern (CBCS – CAGP) of education has been introduced in all programs to facilitate students to opt for subjects of their choice in addition to the core subjects of the studyand prepare them with needed skills. The system also allows students to move forward under the fast track for those who have the capabilities to surpass others. These programs are taught

by well experienced qualified faculty supported by the experts from industries, business sectors and such other organizations. REVA University has also initiated many supportive measures such as bridge courses, special coaching, remedial classes, etc., for slow learners so as to give them the needed input and build in them confidence and courage to move forward and accomplish success in their career. The University has also entered into MOUs with many industries, business firms and other institutions seeking their help in imparting quality education through practice, internship and also assisting students' placements.

REVA University recognizing the fact that research, development and innovation are the important functions of any university has established an independent Research and Innovation division headed by a senior professor as Dean of Research and Innovation. This division facilitates all faculty members and research scholars to undertake innovative research projects in engineering, science & technology and other areas of study. The interdisciplinary-multidisciplinary research is given the top most priority. The division continuously liaisons between various funding agencies, R&D Institutions, Industries and faculty members of REVA University to facilitate undertaking innovative projects. It encourages student research projects by forming different research groups under the guidance of senior faculty members. Some of the core areas of research wherein our young faculty members are working include DataMining, Cloud Computing, Image Processing, Network Security, VLSI and Embedded Systems, Wireless Censor Networks, Computer Networks, IOT, MEMS, Nano- Electronics, Wireless communication,

Bio-fuels, Nano-technology for coatings, Composites, Vibration Energies, Electric Vehicles, Multilevel Inverter Application, Battery Management System, LED Lightings, Renewable Energy Sources and Active Filter, Innovative Concrete Reinforcement, Electro Chemical Synthesis, Energy Conversion Devices, Nano-structural Materials, Photo-electrochemical Hydrogen generation, Pesticide Residue Analysis, Nano materials, Photonics, Nana Tribology, Fuel Mechanics, Operation Research, Graph theory, Strategic Leadership and Innovative Entrepreneurship, Functional Development Management, Resource Management and Sustainable Development, Cyber Security, General Studies, Feminism, Computer Assisted Language Teaching, Culture Studies etc.

The REVA University has also given utmost importance to develop the much required skills through variety of training programs, industrial practice, case studies and such other activities that induce the said skills among all students. A full-fledged Career Development and Placement (CDC) department with world class infrastructure,

headed by a dynamic experienced Professor& Dean, and supported by well experienced Trainers, Counselors and Placement Officers.

The University also has University-Industry Interaction and Skill Development Centre headed by a Senior Professor & Director facilitating skill related training to REVA students and other unemployed students. The University has been recognized as a Centre of Skill Development and Training by NSDC (National Skill Development Corporation) under Pradhan Mantri Kaushal VikasYojana. The Centre conducts several add-on courses in challenging areas of development. It is always active in facilitating student's variety of Skill Development Training programs.

The University has collaborations with Industries, universities abroad, research institutions, corporate training organizations, and Government agencies such as Florida International University, Oklahoma State University, Western Connecticut University, University of Alabama, Huntsville, Oracle India Ltd, Texas Instruments, Nokia University Relations, EMC2, VMware, SAP, Apollo etc., to facilitate student exchange and teacher–scholar exchange programs and conduct training programs. These collaborations with foreign universities also facilitates students to study some of the programs partly in REVA University and partly in foreign university, viz, M.S in Computer Science one year in REVA University and the next year in the University of Alabama, Huntsville, USA.

The University has also given greater importance to quality in education, research, administration and all activities of the university. Therefore, it has established an independent Internal Quality division headed by a senior professor as Dean of Internal Quality. The division works on planning, designing and developing different quality tools, implementing them and monitoring the implementation of these quality tools. It concentrates on training entire faculty to adopt the new tools and implement their use. The division further works on introducing various examination and administrative reforms.

To motivate the youth and transform them to become innovative entrepreneurs, successful leaders of tomorrow and committed citizens of the country, REVA organizes interaction between students and successful industrialists, entrepreneurs, scientists and such others from time to time. As a part of this exercise great personalities such as Bharat Ratna Prof. C. N. R. Rao, a renowned Scientist, Dr. N R Narayana Murthy, Founder and Chairman and Mentor of Infosys, Dr. K Kasturirangan, Former Chairman ISRO, Member of Planning Commission, Government of India, Dr. Balaram, Former Director IISc., and noted Scientist, Dr. V S Ramamurthy, Former Secretary, DST, Government of India, Dr. V K Aatre, noted Scientist and former head of the DRDO and Scientific Advisor to the Ministry of Defence Dr. Sathish Reddy, Scientific Advisor, Ministry of Defence, New Delhi and many others have accepted our invitation and blessed our students and faculty members by their inspiring addresses andinteraction.

REVA organizes various cultural programs to promote culture, tradition, ethical and moral values to our students. During such cultural events the students are given opportunities to unfold their hidden talents and motivate them to contribute innovative ideas for the progressof the society. One of such cultural events is REVAMP conducted every year. The event not only gives opportunities to students of REVA but also students of other Universities and Colleges. During three days of this mega event students participate in debates, Quizzes, Group discussion, Seminars, exhibitions and variety of cultural events. Another important event is Shubha Vidaaya, - Graduation Day for the final year students of all the programs, wherein, the outgoing students are felicitated and are addressed by eminent personalities to take theirfuture career in a right spirit, to be the good citizens and dedicate themselves to serve the society and make a mark in their respective spheres of activities. During this occasion, the students who have achieved top ranks and won medals and prizes in academic, cultural and sports activities are also recognised by distributing awards and prizes. The founders have also instituted medals and prizes for sports achievers every year. The physical education department conducts regular yoga class's every day to students, faculty members, administrative staff and their family members and organizes yoga camps for villagers around.

Vision

REVA University aspires to become an innovative university by developing excellent human resources with leadership qualities, ethical and moral values, research culture and innovative skills through higher education of global standards".

Mission

- To create excellent infrastructure facilities and state-of-the-art laboratories and incubation centers.
- To provide student-centric learning environment through innovative pedagogy and education reforms.
- To encourage research and entrepreneurship through collaborations and extension activities.
- To promote industry-institute partnerships and share knowledge for innovation and development.
- To organize society development programs for knowledge enhancement in thrust areas.
- To enhance leadership qualities among the youth and enrich personality traits, promote patriotism and moral values.

Objectives

Creation, preservation and dissemination of knowledge and attainment of excellence in different disciplines

Smooth transition from teacher - centric focus to learner - centric processes and activities

Performing all the functions of interest to its major constituents like faculty, staff, students and the society to reach leadership position

Developing a sense of ethics in the University and Community, making it conscious of its obligations to the society and the nation

Accepting the challenges of globalization to offer high quality education and other services in a competitive manner

ABOUT SCHOOL OF CIVIL ENGINEERING

The School of Civil Engineering is headed by highly experienced Professor and is supported by well qualified faculty members. The school has the state-of-art class rooms and well equipped laboratories. It offers B.Tech and M.Tech programs in various specialized streams. The school also has research program leading to doctoral degree. The curriculum of both graduate and post graduate degree programs have been designed to bridge the gap between industry – academia and hence they are industry application oriented. The B.Tech program aims to prepare human resources to play a leading role in the competitive construction field and excelin their endeavors. The Master's Degree programs focus on research and design in the core and Computer Aided Structural Engineering, Construction Technology and Management & Transportation Engineering & Management to supplement and create a sustainable world and to enhance the global quality of life by adopting enhanced techniques of design and application. This is reflected in various core subjects offered within the program. Currently Civil Engineering teaching was limited to planning, analysis, design and execution of different types of infrastructure like buildings, roads, bridges, dams and power plants. However, due to increase of technological sophistication and demand for higher living standards geared up by economic growth and concerns about environmental impact have changed the scope of Civil Engineering. The challenges of today's Civil Engineering infrastructure are much more complex and interdependencies between resources.

Even though there are a large number of institutions in the country which are producing Civil Engineers, there is acute shortage of quality Civil Engineers. The REVA UNIVERSITY would like to offer Civil Engineering Programme to produce quality engineers who are effective and efficient in problem solving and providing economical and sustainable infrastructural solutions.

VISION

"To produce young Engineers of caliber, who would be committed to their profession with ethics, will be able to contribute to Civil Engineering and allied fields in optimizing usage of resources globally making the world more eco-friendly to live in."

MISSION

To make the Department center of excellence for training the undergraduate students.

To promote involvement of staff and students in research and advanced training.

To develop good understanding skills in student communities about Civil Engineering, ethical practices, automation design and society need centric teaching and learning and impartingvalue addition skills.

BOARD OF STUDIES COMMITTEE

	BOS MEMBERS LIST FOR M TECH CONSTRUCTION TECHNOLOGY AND MANAGEMENT					
SI. No.	Name Designation & Attiliation Status (Orrespondence Address					
1	Dr.Y. Ramalinga Reddy Director, School of Civil Engineering, REVA University	Chairperson	Rukmini Knowledge park, REVA University, Yelahanka, Bengaluru-560064 (M): 9448508996 Email: ramalingareddy@reva.edu.in			
2	Dr. V. Ramachandra Zonal Head, Technical Services, Ultra Tech Cement Ltd.,	Member	Zonal Head, Technical Services, Ultra Tech Cement Ltd., Industry House, 6th floor, #45, Race Course Road, Bangalore 560 001, (M)97432-47985 Email: ramachandra.v@adityabirla.com			
3	Dr. G. Anand Director, APT Consulting Engineering Service,	Member	No. 55/2, 3rd floor, East Park Road, Malleshwaram, Bangalore- 560055 (M): 9845128153 Email: gananda36@gmail.com			
4	Sri. N. Ranganath Managing Director, EIT Technology Pvt. Ltd.,	Member	35th 'C' Cross, 4th T block, Jaya Nagar, Bangalore- 560041 (M): 9449021149 Email: nranganatha@eitech.in			
5	Dr. R.V. Ranganath Professor, Department of Civil Engineering, BMS College of Engineering	Member	Professor, Dept. of Civil Engineering, BMS College of Engineering, Bull Temple Road, Bangalore-560 019 (M) 98450-86602 Email: rangarv@yahoo.com			
6	Dr. K. M. Krishna Murthy RAASTA- Centre for Road Technology	Member	Volvo Equipment Campus, Phase-1, Peenya Industrial area, Bangalore- 560058 (M): 9844119221 Email: group.rasta@raastaindia.com			
7	Dr. Anil Kumar K S Highway design lead, WS Atkins India Pvt. Ltd.,	Member	#81, 2nd cross, Munnireddy layout, Banaswadi, Horamavu, Bengaluru-560043 (M): 8105555778 Email: anilgowda1985@gmail.com			
8	Sri. Raghavendra Y.B Senior Manager – Quality Control & Research & Development, M/s Aparna Enterprises Limited.	Member	#4/2, Shri Kalabhyraveshwara Nilaya, 5th Cross, 3rd Main, Riffco Shantinikethan Layout, Medahalli, Virgonagar post, Bengaluru-560049 (M): 9886161233 Email: <u>raghuyb82@gmail.com</u>			

9	Dr. Sunil Kumar Tengli Professor, REVA University	Member (Internal)	School of Civil Engineering, Rukmini Knowledge park, REVA University, Yelahanka, Bengaluru-560064 (M): 9844057122 Email: dr.sktengali@reva.edu.in
10	Dr. P. Shivananda Professor, REVA University	Member (Internal)	School of Civil Engineering, Rukmini Knowledge park, REVA University, Yelahanka, Bengaluru-560064 (M): 9448047250 Email: pshivananda@reva.edu.in
11	Dr. Seelam Srikanth Reddy Assistant Professor, REVA University	Member (Internal)	School of Civil Engineering, Rukmini Knowledge park, REVA University, Yelahanka, Bengaluru-560064 (M): 9491303992 Email: srikanths.reddy@reva.edu.in
12	Vinayaka B. Asst. Professor, REVA University	Member Alumni	Rukmini Knowledge park, REVA University, Yelahanka, Bengaluru-560064 (M): 9538959138 Email: vinayaka.b@reva.edu.in
13	Darshan G Student, REVA University	Current Student	Rukmini Knowledge park, REVA University, Yelahanka, Bengaluru-560064 (M): 8861216143 Email: r19mct08@ce.reva.edu.in

Program Overview

Designing, planning, construction, and management of infrastructures shows the actual potential of a construction engineer. Without using all these 4 rules not one can get satisfactory response and results as per expectations. Doing practice on infrastructures such as highways, bridges, airports, railroads, buildings, dams, and utilities shows the worth and creative approach of an expert engineer. People can help for any type of ideas before constructing their homes and other type of architectures. Project manager uses 3D and 4D software to build architectures and houses for the people. Construction Costs Analysis helps a professional to make plans on behalf of available resources and delay the less important items to accomplish tasks early. The construction industry is experiencing technological revolution to make unique and creative plans. Taking more and more interest by the new generations means creating much opportunities and potentials for newbies. People should take admissions to learn to constrictions related courses and professional degrees to become professionals and best engineers.

Instant Access to Learn and to Seek New Trends & Technological Revolutions in Constructions. Internet can help in great sense to learn and to get awareness from latest technology trends in construction and to adopt new standards of teaching to get qualifications and support from professionals. Online education can help students to get instant access to find all useful resources and professional support toseek latest trends and modern style of education to build unique constructions and to improve current standards. Show your interest and find the best and authentic source of knowledge from you can get knowledge and support to become a perfect construction engineer.

Program Educational Objectives (PEO's)

After few years of post-graduation, the graduates of **M.Tech CE (Construction Technology & Management)** will be:

- PEO-1 Have successful professional careers in industry, government, academia and military as innovative engineers.
- PEO-2 Successfully solve engineering problems associated with the lifecycle of Civil Engineering system, in particular construction technology and management by communicating effectively either leading a team or as a team member with ethical practices.
- PEO-3 Continue to learn and advance their careers through activities such as research and development, acquiring doctoral degree, participation in national level research programmes, teaching and research at university level etc.,
- PEO-4 Active members ready to serve the society locally and internationally, may take up entrepreneurship for the growth of economy and to generate employment; and adopt the philosophy of lifelong learning to be aligned with economic and technological development.

Program Outcomes (POs)

On successful completion of the program, the graduates of M.Tech CE (Construction Technology & Management) program will be able to:

PO1. Demonstrate in-depth knowledge of specific discipline or professional area, including wider and global perspective, with an ability to discriminate, evaluate, analyse and synthesize existing and new knowledge, and integration of the same for enhancement of knowledge.

PO2. Analyze complex engineering problems critically, apply independent judgment for synthesizing information to make intellectual and/or creative advances for conducting research in a wider theoretical, practical and policy context.

PO3. Think laterally and originally, conceptualize and solve engineering problems, evaluate a wide range of potential solutions for those problems and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of expertise.

PO4. Extract information pertinent to unfamiliar problems through literature survey and experiments, apply appropriate research methodologies, techniques and tools, design, conduct experiments, analyse and interpret data, demonstrate higher order skill and view things in a broader perspective, contribute individually/in group(s) to the development of scientific/technological knowledge in one or more domains of engineering.

PO5. Create, select, learn and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering activities with an understanding of the limitations.

PO6. Possess knowledge and understanding of group dynamics, recognize opportunities and contribute positively to collaborative-multidisciplinary scientific research, demonstrate a capacity for self-management and teamwork, decision-making based on open-mindedness, objectivity and rational analysis in order to achieve common goals and further the learning of themselves as well as others.

PO7. Demonstrate knowledge and understanding of engineering and management principles and apply the same to one's own work, as a member and leader in a team, manage projects efficiently in respective disciplines and multidisciplinary environments after consideration of economic and financial factors.

PO8. Communicate with the engineering community, and with society at large, regarding complex engineering activities confidently and effectively, such as, being able to comprehend and write effective reports and design documentation by adhering to appropriate standards, make effective presentations, and give and receive clear instructions.

PO9: Recognize the need for, and have the preparation and ability to engage in life-longlearning independently, with a high level of enthusiasm and commitment to improve knowledge and competence continuously.

PO10. Acquire professional and intellectual integrity, professional code of conduct, ethics of research and scholarship, consideration of the impact of research outcomes on professional practices and an understanding of responsibility to contribute to the community for sustainable development of society.

PO11. Observe and examine critically the outcomes of one's actions and make corrective measures subsequently, and learn from mistakes without depending on external feedback(SELF learning)

Programme Specific Outcomes (PSO's)

After successful completion of the programme, the graduates shall be able to

An ability to plan, analyse, design, synthesize, execute, and manage complicated infrastructure projects within local and global context in a sustainable manner.

Implant the capacity to apply the concepts of Artificial intelligence, IoT, Advanced data modeling techniques, etc. in the design, development and implementation of application oriented engineering systems

Review scholarly work by referring journals, define a new problem, design, model, analyse and evaluate the solution and report as a dissertation in the area of construction technology and management.

GA1: Scholarship of knowledge GA2: Critical thinking GA3: Problem solving GA4: Research skill GA5: Usage of modern tools GA6: Collaborative and multidisciplinary work GA7: Project management and finance GA8: Communication GA9: Lifelong learning GA10: Ethical practices and social responsibility GA11: Independent and reflective learning.

Regulations – M Tech., Degree Program Academic Year 2020-21 Batch

(Framed as per the provisions under Section 35 (ii), Section 7 (x) and Section 8 (xvi) & (xxi) of the REVA University Act, 2012)

1. Title and Commencement:

- **1.1** These Regulations shall be called "REVA University Academic Regulations M Tech., Degree Program 2020-21 Batch subject to amendments from time to time by the Academic Council on recommendation of respective Board of Studies and approval of Board of Management
- **1.2** These Regulations shall come into force from the date of assent of the Chancellor.

2. The Programs:

These regulations cover the following M Tech., Degree programs of REVA University offered during 2020-21

. . ..

M Tech (Full Time) in: Artificial Intelligence Computer Science and Engineering Computer Aided Structural Engineering Construction Technology & Management Digital Communication and Networking Machine Design Power Energy & Systems Transportation Engineering and Management VLSI and Embedded Systems

Also

M Tech (Part Time) in:

Computer Science and Engineering VLSI and Embedded Systems

3. Duration and Medium of Instructions:

3.1 **Duration:** The duration of the M Tech degree program shall be **TWO years** comprising of **FOUR** Semesters.

A candidate can avail a maximum of 8 semesters - 4 years as per double duration norm, in one stretch to complete M Tech degree. The duration for part time students is **THREE years** and a maximum of 6 years they are required to complete the program.

3.2 The medium of instruction shall be English.

4. Definitions:

4.1 Course: "Course" means a subject, either theory or practical or both, listed under a programme; Example: "Finite Element Method of Analysis" in M Tech Civil Engineering program, "Advanced Theory of Vibration" in M Tech., Mechanical program are examples of courses to be studied under respective programs.

5 Every course offered will have three components associated with the teaching-learning process of the course, namely:

L	Lecture
Т	Tutorial
Р	Practice

Where:

L stands for Lecture session consisting of classroom instruction.

T stands for **Tutorial** session consisting participatory discussion / self-study/ desk work/ brief seminar presentations by students and such other novel methods that make a student to absorband assimilate more effectively the contents delivered in the Lecture classes.

P stands for **Practice** session and it consists of Hands on Experience / Laboratory Experiments / Field Studies / Case Studies / Project Based Learning or Course end Project/Self Study/ Online courses from listed portals that equip students to acquire the much required skill component.

4.2 Classification of Courses

Courses offered are classified as: Core Courses, Open Elective Courses, Project work/Dissertation

- 4.2.1 **Core Course:** A course which should compulsorily be studied by a candidate choosing a particular program of study
- 4.2.2 **Foundation Course:** The foundation Course is a mandatory course which should be completed successfully as a part of graduate degree program irrespective of the program of study
- 4.2.3 Hard Core Course (HC) simply core course: The Hard Core Course is a Core Course in the main branch of study and related branch(es) of study, if any, that the candidates have to complete compulsorily

Soft Core Course (SC) (also known as Professional Elective Course)

A Core course may be a **Soft Core** if there is a choice or an option for the candidate to choose a course from a pool of courses from the main branch of study or from a sister/related branch of study which supports the main branch of study

4.2.4 Open Elective Course (OE):

An elective course chosen generally from other discipline / subject, with an intention to seek exposure to the basics of subjects other than the main discipline the student is studying is called an **Open Elective Course**

4.2.5 Project Work / Dissertation:

Project work / Dissertation work is a special course involving application of knowledge in solving / analysing /exploring a real life situation / difficult problems to solve a multivariable or complex engineering problems.

5. Eligibility for Admission:

5.1. The eligibility criteria for admission to M Tech Program (Full Time) of 2 years (4 Semesters) and (Part Time) of 3 years (6 Semesters) are given below:

SI.	Program	Duration	Eligibility
No.			
		4	B E / B.Tech. in CSE / ISE / TE / MCA / M. Sc. in
1	Masters of Technology	Semesters	Computer Science or Mathematics or Information
	(M Tech) in	(2 years)	Science or Information Technology with a
	Artificial Intelligence		minimum of 50% (45% in case of SC/ST) marks in
			aggregate of any recognized University /
			Institution or AMIE or any other qualification
			recognized as equivalent there to.
		Full Time –	B E / B.Tech. in ECE / IT / EEE / CSE / ISE / TE /
		4	MCA
2	M Tech in Computer	Semesters	/ M.Sc. in Computer Science or Mathematics or
	Science and	(2 years)	Information Science or Information Technology
	Engineering	Part Time	with a minimum of 50% (45% in case of SC/ST)
		Fart fille	marks in aggregate of any recognized University /
		6	Institution or AMIE or any other qualification
		Semesters	recognized as equivalent there to.
		(3 years)	

3	M Tech in Computer Aided Structural Engineering Construction Technology & Management Transportation Engineering and Management	4 Semesters (2 years)	BE/ B.Tech. in Civil Engineering with a minimum of 50% (45% in case of SC/ST) marks in aggregate of any recognized University / Institution or AMIE or any other qualification recognized as equivalent there to.
4	M Tech in Power Energy & Systems	4 Semesters (2 years)	BE/ B.Tech. in EE/ EEE/ ECE/ CSE/ MS / M.Sc. in Mathematics/Physics/Electronics / Information Technology or Information Science with a minimum of 50% (45% in case of SC/ST) marks in aggregate of any recognized University / Institution or AMIE or any other qualification recognized as equivalent there to.
5	M Tech in Digital Communication and Networking Machine Design	4 Semesters (2 years)	B E / B.Tech. in ECE /TE / EEE / CSE / ISE / Instrumentation Technology / Medical Electronics/M Sc in Electronics with a minimum of 50% (45% in case of SC/ST) marks in aggregate of any recognized University/Institution or AMIE or any other qualification recognized as equivalent there to.
6	M Tech in VLSI and Embedded Systems	Full Time – 4 Semesters (2 years) Part Time – 6 Semesters (3 years)	B E / B.Tech. in ECE /TE / EEE / CSE / ISE / Instrumentation Technology / Medical Electronics/M Sc in Electronics with a minimum of 50% (45% in case of SC/ST) marks in aggregate of any recognized University/Institution or AMIE or any other qualification recognized as equivalent there to.
7	M Tech in Machine Design	4 Semesters (2 years)	BE / B.Tech. in Mechanical/Aeronautical / Automobile / Industrial Production Engineering with a minimum of 50% (45% in case of candidate belonging to SC/ST category) marks in aggregate, of any recognized University / Institution or AMIE or any other qualification recognized as equivalent there to.

5.2 Provided further that the eligibility criteria are subject to revision by the Government Statutory Bodies, suchas AICTE, UGC from time to time.

6 Courses of Study and Credits

- 6.2 Each course of study is assigned with certain credit value
- 6.3 Each semester is for a total duration of 20 weeks out of which 16 weeks dedicated for teaching and learning and the remaining 4 weeks for final examination, evaluation and announcement of results
- 6.4 The credit hours defined as below

In terms of credits, every one hour session of L amounts to 1 credit per Semester and a minimum of two hour session of T or P amounts to 1 credit per Semester or a three hour session of T / P amounts to 2 credits over a period of one Semester of 16 weeks for teaching-learning process.

1 credit = 13 credit hours spread over 16 weeks or spread over the semester.

The total duration of a semester is 20 weeks inclusive of semester-end examination.

The following	table describes	credit pattern
---------------	-----------------	----------------

Table -2: Crec	able -2: Credit Pattern						
Lectures (L)	Tutorials (T)	Practice (P)	Credits (L:T:P)	Total Credits	Total Contact Ho		
4	2	0	4:1:0	5	6		
3	2	0	3:1:0	4	5		
3	0	2	3:0:1	4	5		
2	2	2	2:1:1	4	6		
0	0	6	0:0:3	3	6		
4	0	0	4:0:0	4	4		
2	0	0	2:0:0	2	2		

a. The concerned BoS will choose the convenient Credit Pattern for every course based on size and nature of the course

7. Different Courses of Study:

Different Courses of Study are labeled as follows:

- a. Core Course (CC)
- b. Foundation Course (FC)
- c. Hard Core Course (HC)
- d. Soft Core Course (SC)
- e. Open Elective Course (OE)
- f. Minor Project
- g. Major Project / Dissertation:

The credits for minor projects, major project/Dissertation will be decided by the respective Schools.

8. Credit and Credit Distributions:

8.1 A candidate has to earn 72 credits for successful completion of M Tech degree with a distribution of credits for different courses as prescribed by the University.

8.2 A candidate can enroll for a maximum of 24 credits per Semester. However s/he may not successfully earn

a maximum of 24 credits per semester. This maximum of 24 credits does not include the credits of courses carried forward by a candidate.

8.3 Only such full time candidates who register for a minimum prescribed number of credits in each semester from I semester to IV semester and complete successfully 72 credits in 4 successive semesters shall be considered for declaration of Ranks, Medals, Prizes and are eligible to apply for Student Fellowship, Scholarship, Free ships, and such other rewards / advantages which could be applicable for all full time students and for hostel facilities.

9. Assessment and Evaluation

9.1 The assessment and evaluation process happens in a continuous mode. However, for reporting purpose, a Semester is divided into 3 components as IA1, IA2 and SEE. The performance of a candidate in a course will be assessed for a maximum of 100 marks as explained below.

(i) Component IA1:

The first Component (IA1), of assessment is for 25 marks. This will be based on test, assignment / seminar. During the first half of the semester (i.e. by 8th week), the first 50% of the syllabus (Unit 1&2) will be completed. This shall be consolidated during the first three days of 8th week of the semester. A review test based on IA1 will be conducted and completed in the beginning of the 9th week. In case of courses where test cannot be conducted, the form of assessment will be decided by the concerned school and such formalities of assessment will be completed in the beginning of the 9th week. The academic sessions will continue for IA2 immediately after completion of process of IA1.

The finer split - up for the award of marks in IA1 is as follows:

(ii) Component IA2:

The second component (IA2), of assessment is for 25 marks. This will be based on test, assignment /seminar. The continuous assessment and scores of second half of the semester (9th to 16th week) will be consolidated during 16th week of the semester. During the second half of the semester the remaining units in the course will be completed. A review test based on IA2 will be conducted and completed during 16th week of the semester. In case of courses where test cannot be conducted, the form of assessment will be decided by the concerned school and such formalities of assessment will be completed during 16th week.

The 17th week will be for revision of syllabus and preparation for the semester – end examination.

The finer split - up for the award of marks in IA2 is as follows:

(iii) Component SEE:

The Semester End Examination of 3 hours duration for each course shall be conducted during the 18th & 19th week. This forms the third / final component of assessment (SEE) and the maximum marks for the final component will be 50.

9.2 The schedule of continuous assessment and examinations are summarized in the following Table below.

Component	Period	Syllabus	Weightage	Activity
IA1	1 st Week to 8 th Week	First 50%		Instructional process and Continuous Assessment
	Last 3 days of 8 th Week	(two units)	25%	Consolidation of IA1
IA2	9 th week to 16 th week	Second 50% (remaining		Instructional process and Continuous Assessment
	Last 3 days of 16 th week	two units)	25%	Consolidation of IA2
	17 th and 18 th week			Revision and preparation for Semester end examination
SEE	19 th week to 20 th week	Entire syllabus	50%	Conduct of semester end examination and Evaluation concurrently
	21 st week			Notification of Final Grades

Note: 1. Practical examination wherever applicable shall be conducted before conducting of IA2 examination. The calendar of practical examination shall be decided by the respective

announced latest by 21st week

- school.
- 2. Finally, **awarding the Grades** be announced latest by 5 days after completion of the examination.

9.3 The Assessment of MOOC and Online Courses shall be decided by the concerned School Board of

Studies (BOS).

9.3.1 For > 3 credit courses

i	IA-I	25 marks
ii	IA-2	25 marks
iii	Semester end examination by the concern school board (demo, test, viva voice etc)	50 marks
	Total	100 marks

9.3.2 For 1 & 2 credit courses.

i	IA-I	15 marks
ii	IA-2	15 marks
iii	Semester end examination by the concern school board (demo, test, viva voice etc)	20 marks
	Total	50 marks

9.3.3.The 50 marks meant for Internal Assessment (IA) of the performance in carrying out practical shall further be allocated as under:

i	Conduction of regular practical / experiments throughout the semester	20 marks
ii	Maintenance of lab records / Activities / Models / charts etc	10 marks
iii	Performance of mid-term test (to be conducted while conducting second test for theory courses); the performance assessments of the mid-term test includes performance in the conduction of experiment and write up about the experiment.	20 marks
	Total	50 marks

In case of an integrated course 20% marks be earmarked for laboratory work

For example:

During IA1	
Laboratory work	10 marks
Test (Mid-Term)	15 marks for the first 50% of the theory syllabus
Total	25 marks
During IA2	
Laboratory work	10 marks
Test (Mid-Term)	15 marks for the second 50% of theory syllabus
Total	25 marks

SEE to be conducted for theory portions only and assessed for 50 marks

10. Setting Questions Papers and Evaluation of Answer Scripts:

- 10.1 There shall be three sets of questions papers set for each course. Two sets of question papers shall be set by the internal and one set by external examiner for a course. The Chairperson of the BoE shall get the question papers set by internal and external examiners.
- 10.2 The Board of Examiners shall scrutinize and approve the question papers and scheme of valuation.
- 10.3 There shall be double evaluation, viz, first valuation by the internal evaluator who has taught the course and second evaluation shall be an external examiner who is familiar with the course. The average marks of the two evaluations (internal examiner & external examiner) shall be the marks to be considered for declaration of results.
- 10.4 The examination for Practical work/ Field work/Project work will be conducted jointly by two examiners (internal and external). However, in case of non-availability of external examiner or vice versa, the Chairperson BoE at his discretion can invite internal / external examiners as the case may be, if required.

- 10.5 If a course is fully of (L=0):T: (P=0) type, then the examination for SEE Component will be as decided by the BoS concerned.
- 10.6 In case of a course with only practical component a practical examination will be conducted with two examiners and each candidate will be assessed on the basis of: a) Knowledge of relevant processes, b) Skills and operations involved, and c) Results / Products including calculation and reporting.
- 10.7 The duration for Semester-End practical examination shall be decided by the Controller of Examinations.

11. Evaluation of Minor Project / Major Project / Dissertation:

Right from the initial stage of defining the problem, the candidate has to submit the progress reports periodically and also present his/her progress in the form of seminars in addition to the regular discussion with the supervisor. At the end of the semester, the candidate has to submit final report of the project / dissertation, as the case may be, for final evaluation. The components of evaluation are as follows:

Component – I	(IA1)	Periodic Progress and Progress Reports (25%)
Component – II	(IA2)	Results of Work and Draft Report (25%)
Component– III	(SEE)	Final Evaluation and Viva-Voce (50%). Evaluation of the report is for 30% and the Viva-Voce examination is for 20%.

12. All assessments must be done by the respective Schools as per the guidelines issued by the Controller of Examinations. However, the responsibility of announcing final examination results and issuing official transcripts to the students lies with the office of the Controller of Examinations.

13. Requirements to Pass a Course

13.1 A candidate's performance from all 3 components will be in terms of scores, and the sum of all three scores will be for a maximum of 100 marks (25 + 25 + 50). A candidate who secures a minimum of 40% in the SEE and an overall 40% (IA1+IA2+SEE) in a course is said to be successful.

13.2 **The Grade and the Grade Point:** The Grade and the Grade Point earned by the candidate in the subject will be as given below:

Marks,	Grade,	Grade Point	Letter
Р	G	(GP=V x G)	Grade
90-100	10	v*10	0
80-89	9	v*9	A+
70-79	8	v*8	А
60-69	7	v*7	B+
55-59	6	v*6	В
50-54	5.5	v*5.5	C+
40-49	5	v*5	C
0-39	0	v*0	F
	ABSEN	Г	AB

O - Outstanding; A+-Excellent; A-Very Good; B+-Good; B-Above Average; C+-Average; C-Satisfactory; F – Unsatisfactory.

Here, P is the percentage of marks (P=[(IA1+IA2)+SEE] secured by a candidate in a course which is **rounded to nearest integer**. v is the credit value of course. G is the grade and GP is the grade point.

a. Computation of SGPA and CGPA

The Following procedure to compute the Semester Grade Point Average (SGPA) The SGPA is the ratio of sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and the sum of the number of credits of all the courses undergone by a student, i.e

SGPA (Si) = Σ (Ci x Gi) / Σ Ci

Where Ci is the number of credits of the ith course and Gi is the grade point scored by the student in the ith course.

Course	Credit	Grade letter	Grade Point	Credit Point		
				(Credit x		
				Grade)		
Course 1	3	Α	9	3X9=27		
Course 2	3	В	8	3X8=24		
Course 3	3	С	7	3X7=21		
Course 4	3	0	10	3X10=30		
Course 5	3	D	6	3X6=18		
Course 6	3	0	10	3X10=30		
Course 7	2	Α	9	2X 9 = 18		
Course 8	2	В	8	2X 8 = 16		
	22			184		

b. Illustration for Computation of SGPA and CGPA Illustration No. 1

Thus, SGPA = 184 ÷ 22 = 8.36

c. Cumulative Grade Point Average (CGPA):

Overall Cumulative Grade Point Average (CGPA) of a candidate after successful completion of the required number of credits (72) for two year post graduate degree in a specialization is calculated taking into account all the courses undergone by a student over all the semesters of a program, i. e CGPA = $\Sigma(Ci \times Si) / \Sigma Ci$

Where Si is the SGPA of the ith semester and Ci is the total number of credits in that semester.

The SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.

Illustration:

CGPA after Final Semester

No. of Credits (Ci)	SGPA (Si)	Credits x SGPA (Ci X Si)				
22	8.36	22 x 8.36 = 183.92 22 x 8.54 =187.88				
22	8.54					
16	9.35	16x9.35=149.6 12x9.50=114				
12	9.50					
72		635.4				
	(Ci) 22 22 16 12	(Ci)(Si)228.36228.54169.35129.5072				

Thus, **CGPA** = <u>22x8.36+22x8.54+16x9.35+12x9.50</u> = 8.83

13.3 **Conversion of Grades Into Percentage:**

Conversion formula for the conversion of CGPA into Percentage is:

72

Percentage of marks scored = CGPA Earned x 10

Illustration: CGPA Earned 8.83 x 10=88.30

14. **Classification of Results**

The final grade point (FGP) to be awarded to the student is based on CGPA secured by the candidate and is given as follows:

CGPA	Grade (Numerical Index)	Letter Grade	Performance	FGP
	G			Qualitative Index
9 >= CGPA 10	10	0	Outstanding	Distinction
8 >= CGPA < 9	9	A+	Excellent	DISTILCTION
7 >= CGPA < 8	8	А	Very Good	First Class
6 >= CGPA < 7	7	B+	Good	FIIST CIdSS
5.5> = CGPA < 6	6	В	Above average	Second Class
> 5 CGPA < 5.5	5.5	C+	Average	Second Class
> 4 CGPA <5	5	С	Satisfactory	Pass
< 4 CGPA	0	F	Unsatisfactory	Unsuccessful

Overall percentage=10*CGPA

- a. Provisional Grade Card: The tentative / provisional Grade Card will be issued by the Controller of Examinations at the end of every Semester indicating the courses completed successfully. The provisional grade card provides Semester Grade Point Average (SGPA). This statement will not contain the list of DROPPED courses.
- b. Final Grade Card: Upon successful completion of the Post Graduate Degree a Final Grade card consisting of grades of all courses successfully completed by the Candidate will be issued by the COE.

15. **Attendance Requirement:**

- 15.1 All students must attend every lecture, tutorial and practical classes.
- 15.2 In case a student is on approved leave of absence (e g:- representing the University in sports, games or athletics, placement activities, NCC, NSS activities and such others) and / or any other such contingencies like medical emergencies, the attendance requirement shall be minimum of 75% of the classes taught.

15.3 Any student with less than 75% of attendance in aggregate of all the courses including practical courses / field visits etc., during a semester shall not be permitted to appear to the end semester examination and such student shall seek re-admission

16. Re-Registration and Re-Admission:

16.1 In case a candidate's class attendance in aggregate of all courses in a semester is less than 75% or as stipulated by the University, such a candidate is considered as dropped the semester and is not allowed to appear for semester end examination and he / she shall have to seek re-admission to that semester during subsequent semester / year within a stipulated period.

16.2 In such case where in a candidate drops all the courses in a semester due to personal reasons, it is considered that the candidate has dropped the semester and he / she shall seek re-admission to such dropped semester.

17. Absence during Internal Test:

In case a student has been absent from an internal tests due to the illness or other contingencies he / she may give a request along with necessary supporting documents and certification from the concerned class teacher / authorized personnel to the concerned Director of the School, for conducting a separate internal test. The Director of the School may consider such request depending on the merit of the case and after consultation with course instructor and class teacher, and arrange to conduct a special internal test for such candidate(s) well in advance before the Semester End Examination of that respective semester. Under no circumstances internal tests shall be held / assignments are accepted after Semester End Examination.

18. Eligibility to Appear for Semester End Examination (SEE)

- 18.1 Only those students who fulfill 75% attendance requirement and who secure minimum 30% marks in IA1 and IA2 together in a course are eligible to appear for SEE examination in that course.
- 18.2 Those students who have 75% of attendance but have secured less than 30% marks in IA1 and IA2 together in a course are not eligible to appear for SEE examination in that course. They are treated as dropped the course and they will have to repeat that course whenever it is offered.

- 18.3 In case a candidate secures more than 30% in IA1 and IA2 together but less than 40% in aggregate of IA1, IA2 and SEE in a course is considered as unsuccessful and such a candidate may either opt to DROP that course or appear for SEE examination during the subsequent semesters / years within the stipulated period.
- 18.4 In such a case wherein he / she opts to appear for just SEE examination, then the marks secured in IA1 and IA2 shall get continued. Repeat SEE examination will be conducted in respective semesters.

19. Provision for Supplementary Examination

In case a candidate fails to secure a minimum of 40% (20 marks) in Semester End Examination (SEE) and a minimum of 40% marks overall (IA and SEE together), such candidate shall seek supplementary examination of only such course(s) wherein his / her performance is declared unsuccessful. The

supplementary examinations are conducted after the announcement of even semester examination results.

The candidate who is unsuccessful in a given course(s) shall appear for supplementary examination of odd and even semester course(s) to seek for improvement of the performance.

20. Provision to Carry Forward the Failed Subjects / Courses:

A candidate who secures a minimum of 40% in the SEE and an overall 40% (IA1+IA2+SEE) in a course is said to be successful otherwise considered that the candidate has failed the course. A candidate is required to successfully complete all thecourses before submission of major project report or dissertation report.

(It means that the candidate has no restrictions on the number of courses that can be carried forward)

21. Provision for Appeal

If a candidate is not satisfied with the evaluation of Internal Assessment components (Internal Tests and Assignments), he/she can approach the Grievance Cell with the written submission together with all facts, the assignments, and test papers, which were evaluated. He/she can do so before the commencement of respective semester-end examination. The Grievance Cell is empowered to revise the marks if the case is genuine and is also empowered to levy penalty as prescribed by the University on the candidate

if his/her submission is found to be baseless and unduly motivated. This Cell may recommend for taking disciplinary/corrective action on an evaluator if he/she is found guilty. The decision taken by the Grievance committee is final.

22. Grievance Committee:

In case of students having any grievances regarding the conduct of examination, evaluation and announcement of results, such students can approach Grievance Committee for redressal of grievances. Grievance committees will be formed by CoE in consultation with VC

For every program there will be one grievance committee. The composition of the grievance committee is as follows:-

- The Controller of Examinations Ex-officio Chairman / Convener
- One Senior Faculty Member (other than those concerned with the evaluation of the course concerned) drawn from the school / department/discipline and/or from the sister schools / departments/sister disciplines – Member.
- One Senior Faculty Members / Subject Experts drawn from outside the University school / department – Member.
- **23.** With regard to any specific case of ambiguity and unsolved problem, the decision of the Vice-Chancellor shall be final.

Rukmini Knowledge Park, Kattigenahalli, Yelahanka, Bengaluru-560064

SCHOOL OF CIVIL ENGINEERING M. Tech in CONSTRUCTION TECHNOLOGY & MANAGEMENT (2020-2022) I SEMESTER

SI.	Course	Title of the Course	HC/SC/OE	Pre requisite	Credit Pat Credit V				Contact Hours	
No	Code			-	L	Т	Ρ	Total	Hours	
		Advanced design of pre-								
1	M20TE0101	stressed & precast	HC		2	1	-	3	4	
		structures		ല്						
2	M20TE0102	Building services	НС	neerir	2	1	-	3	4	
		Concrete Construction		Engi						
3	M20TE0103	Technology	HC	ivil	2	1	-	3	4	
4	M20TE0104	Construction Methods and Equipment	НС	H in C	2	1	-	3	4	
5	M20TE0105	Construction Project and Management with MSP	НС	BE / B. TECH in Civil Engineering	2	1	-	3	4	
6	M20TE0106	Foundation Design and Construction	НС	/ 38 2	1	-	3	4		
7	M20TE0108	Mini Project-I	Practical/Report		0	0	2	2	2	
	T	OTAL		L				20	26	
			Practical							
8	M20TE0107	Construction Materials lab	Practical		0	0	2	2	3	
	TOTAL							02	03	
	TOTAL SEMESTER CREDITS							22		
TOTAL CUMULATIVE CREDITS							22			
TOTAL CONTACT HOURS								29		

Rukmini Knowledge Park, Kattigenahalli, Yelahanka, Bengaluru-560064

SCHOOL OF CIVIL ENGINEERING M. Tech in CONSTRUCTION TECHNOLOGY AND MANAGEMENT (2020-2022)

II SEMESTER

SI.			Title of the Course	HC/SC/OE	Pre requisite	Credit Pa & Credit				Contact
No	l'	Code				L	Τ	Ρ	Total	Hours
1	M2	20TE0201	Composite Materials	HC		2	1	-	3	4
2	M2	20TE0202	Construction Costing and Financial Management	НС		2	1	-	3	4
3	M2	20TES211	Bridge Engineering,	SC	60	2	1	-	3	4
Э	M2	20TES212	Pavement Design, Construction and Management	SC	leerin{	2	1	-	3	4
4	M2	20TES221	Environmental Engineering and Management	SC	ll Engir	2	1	-	3	4
-	M2	20TES222	Special Concretes	SC	ר Civi	2	1	-	3	4
	M2	20TES231	Construction Planning and Control	SC	BE / B. TECH in Civil Engineering	2	1	-	3	4
5	M2	20TES232	Green Building Technology	SC	: / B.	2	1	-	3	4
	M2	20TES233	Modern Construction Materials	SC	BI	2	1	Γ	3	4
	M2	20TES241	Applications of IoT in Civil Engineering	SC		2	1	-	3	4
6	M2	20TES242	Disaster Reduction and Management	SC		2	1	-	3	4
	M2	20TES243	Shoring, Scaffolding and Formwork	SC		2	1	-	3	4
7	M2	20TE0204	Mini Project-II	Practical/report		0	0	2	2	2
			TOTAL	· · · · · · · · · · · · · · · · · · ·	·				20	26
<u> </u>				Practical			-	- -	1	
8	M2	20TE0203Construction Software LabPractical002					2	3		
		TOTAL							02	03
		-	TOTAL SEMEST						22	
		TOTAL CUMULATIVE CREDITS							44	
		TOTAL CONTACT HOURS								29

Rukmini Knowledge Park, Kattigenahalli, Yelahanka, Bengaluru-560064

SCHOOL OF CIVIL ENGINEERING M. Tech in CNSTRUCTION TECHNOLOGY AND MANAGEMENT (2020-2022) SEMESTER

SI. No	Course Code	Title of the Course	Practical /Term	Pre requisite		edit Cred		ern & Ilue	Contact Hours		
			Work / Sessions		L	Т	Ρ	Total			
1	M20TEON01	MOOC/SWAYAM Online Course	ON	vil	3	1	0	4			
2	M20TE0301	Internship with Report	Practical/ Term Work and Viva - Voce	BE / B. TECH in Civil Engineering	2	0	4	6			
3	M20TE0302	Project Phase-I	Practical/ Report and Viva -Voce	BE / E	2	0	4	6			
		TOTAL						16			
		TOTAL SEMES	TER CREDITS						16		
	TOTAL CUMULATIVE CREDITS										
		TOTAL CONT									

Rukmini Knowledge Park, Kattigenahalli, Yelahanka, Bengaluru-560064

SCHOOL OF CIVIL ENGINEERING

M. Tech in CONSTRUCTION TECHNOLOGY AND MANAGEMENT (2020-2022)

SEMESTER

SI.	Course Code	Title of the	Practical	Pre	-			ern &	Contact		
No		Course	/Term Work	requisite		Cred	it Va	lue	Hours		
			/ Sessions		L	Т	Р	Total			
			Practical/								
		Dissertation	Thesis								
1	M20TE0401	Phase-II	Submission		2	0	6	8			
		Plidse-li	and Viva-								
			Voce								
		Technical	Due etical/								
2	M20TE0402	Seminar With	Practical/		0	0	4	4			
		Report									
		TOTAL						12			
		TOTAL SEME	STER CREDITS						12		
	TOTAL CUMULATIVE CREDITS										
		TOTAL CON									

M20TE0101	· · · · · · · · · · · · · · · · · · ·	L	Т	Р	С
_	ADVANCED DESIGN OF PRESTRESSED				
Duration: 16weeks	AND PRECAST STRUCTURES	2	1	0	3
	of Prestressed Concrete Structures	<u> </u>			
	: Student will be able to learn				
members.	e knowledge about behaviour, analysis and	-		ocks of pos	st tensione
	shear and Torsional resistance of prestressed				
beams for sub	nd design the prestressed concrete tension pjected to flexure and shear.	•			·
	n understanding of the design of continuous b analysis and design of prestressed slabs and g			ortal frame	es.
•	precast elements such as prestressed concret			epers and	wall panels
	After successful completion of this course th	•		•	
	rage zones of prestressed concrete menbers.				
0	shear and torsional resistance of prestressed		rs		
	in the analysis and design of pre-stressed te	ension a	nd compre	ssion mem	bers and a
well as compo					
• •	estressed statically indeterminate structures.	1			
	lesign the prestressed slabs and grid floors. he concepts and techniques of various precas	+ olomer	ote		
		אר בוכוווכ.	113.		
	UNIT-I				12HOURS
Anchorage zone str	UNIT-I esses in post-tensioned members: Introdu	uction, s	stress dist	ribution in	
-					end bloc
-	esses in post-tensioned members: Introdu				end bloc
investigations on And zone reinforcement. Shear and torsional	esses in post-tensioned members: Introdu chorage zone stresses, Magnel and Guyon's M resistance: Shear and principal stresses, ult	lethods,	Comparati	ve Analysi	end bloc s, Anchorag
investigations on And zone reinforcement. Shear and torsional	esses in post-tensioned members: Introdu horage zone stresses, Magnel and Guyon's M	lethods,	Comparati	ve Analysi	end bloc s, Anchorag
investigations on And zone reinforcement. Shear and torsional	esses in post-tensioned members: Introdu chorage zone stresses, Magnel and Guyon's M resistance: Shear and principal stresses, ult	lethods,	Comparati	ve Analysi	end bloc s, Anchorag
investigations on And zone reinforcement. Shear and torsional reinforcement, Torsio	esses in post-tensioned members: Introdu chorage zone stresses, Magnel and Guyon's M resistance: Shear and principal stresses, ult on, Design of reinforcement for torsion.	lethods, timate s	Comparati hear resist	ve Analysis ance, desi	end bloc s, Anchorag ign of shea 12HOURS
investigations on And zone reinforcement. Shear and torsional reinforcement, Torsio Tension members: In	esses in post-tensioned members: Introductor chorage zone stresses, Magnel and Guyon's M resistance: Shear and principal stresses, ult on, Design of reinforcement for torsion. UNIT-II	1ethods, timate s	Comparati hear resist	ve Analysis cance, desi design and	end bloc s, Anchorag ign of shea 12HOURS
investigations on And zone reinforcement. Shear and torsional reinforcement, Torsio Tension members: In specifications. Cylind	esses in post-tensioned members: Introductor chorage zone stresses, Magnel and Guyon's M resistance: Shear and principal stresses, ult on, Design of reinforcement for torsion. UNIT-II troduction, Ties, Pressure pipes – fabrication	timate s	Comparati hear resist s, analysis, esign and s	ve Analysis cance, desi design and pecificatior	end bloc s, Anchorag ign of shea 12HOURS d
investigations on And zone reinforcement. Shear and torsional reinforcement, Torsio Tension members: In specifications. Cylind	esses in post-tensioned members: Introductor chorage zone stresses, Magnel and Guyon's M resistance: Shear and principal stresses, ult on, Design of reinforcement for torsion. UNIT-II stroduction, Ties, Pressure pipes – fabrication rical containers- construction techniques, and ers: Introduction, Columns, short columns,	timate s	Comparati hear resist s, analysis, esign and s	ve Analysis cance, desi design and pecificatior	end bloc s, Anchorag ign of shea 12HOURS d ns.
investigations on And zone reinforcement. Shear and torsional reinforcement, Torsio Tension members: In specifications. Cylind Compression member Design specifications	esses in post-tensioned members: Introductor chorage zone stresses, Magnel and Guyon's M resistance: Shear and principal stresses, ult on, Design of reinforcement for torsion. UNIT-II stroduction, Ties, Pressure pipes – fabrication rical containers- construction techniques, and ers: Introduction, Columns, short columns,	lethods, timate s n process alysis, de long col	Comparati hear resist s, analysis, esign and s lumns, bia	ve Analysis cance, desi design and pecification kially loade	end bloc s, Anchorag ign of shea 12HOURS d ns. ed columns
investigations on And zone reinforcement. Shear and torsional reinforcement, Torsio Tension members: In specifications. Cylind Compression member Design specifications Composite beams: In	esses in post-tensioned members: Introductor chorage zone stresses, Magnel and Guyon's M resistance: Shear and principal stresses, ult on, Design of reinforcement for torsion. UNIT-II Itroduction, Ties, Pressure pipes – fabrication rical containers- construction techniques, and ers: Introduction, Columns, short columns,	lethods, timate s n process alysis, de long col	Comparati hear resist s, analysis, esign and s lumns, bia	ve Analysis cance, desi design and pecification kially loade	end bloc s, Anchorag ign of shea 12HOURS d ns. ed columns
investigations on And zone reinforcement. Shear and torsional reinforcement, Torsio Tension members: In specifications. Cylind Compression member Design specifications Composite beams: In	esses in post-tensioned members: Introduction chorage zone stresses, Magnel and Guyon's M resistance: Shear and principal stresses, ult on, Design of reinforcement for torsion. UNIT-II Introduction, Ties, Pressure pipes – fabrication rical containers- construction techniques, and ers: Introduction, Columns, short columns, ntroduction, types of composite beams, and	lethods, timate s n process alysis, de long col	Comparati hear resist s, analysis, esign and s lumns, bia	ve Analysis ance, desi design and pecification xially loade differentia	end bloc s, Anchorag ign of shea 12HOURS d ns. ed columns
investigations on And zone reinforcement. Shear and torsional reinforcement, Torsio Tension members: In specifications. Cylind Compression member Design specifications Composite beams: In serviceability limit sta	esses in post-tensioned members: Introduction chorage zone stresses, Magnel and Guyon's M resistance: Shear and principal stresses, ult on, Design of reinforcement for torsion. UNIT-II ntroduction, Ties, Pressure pipes – fabrication rical containers- construction techniques, and ers: Introduction, Columns, short columns, ntroduction, types of composite beams, and ate. Design for flexural and shear strength.	timate s n process alysis, de long col alysis for	Comparati hear resist s, analysis, esign and s lumns, bia r stresses,	ve Analysis ance, desi design and pecification kially loade differentia	end bloc s, Anchorag ign of shea 12HOURS d ns. ed columns al shrinkage

Guyon's theorem, Ultimate load analysis, Design of continuous beams and portal frames.

Slab and grid floors: Types of floor slabs, Design of one way, two way and flat slabs. Distribution of pre-

stressing tendons, Analysis and design of grid floors.

UNIT-IV

12HOURS

Precast elements: Introduction, Prestressed concrete poles manufacturing techniques, shapes and cross sectional properties, design loads, design principles. Railway sleepers-classification and Manufacturing techniques, design loads, analysis and design principles. Prestressed concrete pavements, slab and wall panels.

REFERENCE BOOKS

- 1. Design of Prestressed concrete structures Lin T.Y. and H. Burns- John Wiley & Sons, 1982.
- 2. Prestressed Concrete- N. Krishna Raju Tata McGraw Hill, 3rd edition, 1995.
- 3. Prestressed Concrete Structures- P. Dayaratnam Oxford & IBH, 5th Edition, 1991.
- 4. Prestressed Concrete- G.S. Pandit and S.P. Gupta CBS Publishers, 1993.
- 5. Prestressed concrete- N. Rajagopalan; Narosa Publishing House.2nd edition, 2005.
- 6. Design of Prestressed Concrete- A. Nilson; John Willey & Sons.2nd edition, 1987.

IS: 1343: 1980.

Mapping of Course Outcomes with programme Outcomes

Course Code	POS/ COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PSO1	PSO2	PSO3	PSO4
	CO1	2	3		3	3			2	3			3	3	3	
M20TE	CO2	2	3	3	3	3			2	3			3	3	3	
0101	CO3	3	3	2	3	3			2	2			3	3		
	CO4	3	3	3	1	3	1					1	3	3		
	CO5	3	3	3	1	3	1					1	3	3		
	CO6	3	3	3	1	3	1					1	3	3		

Where, 1 (Low), 2 (Medium) and 3 (High) represents strength of correlation between CO and PO.

M20TE0102		L	т	Р	С
Duration: 16weeks	BUILDING SERVICES	2	1	0	3

Prerequisite: building construction

COURSE OBJECTIVES: Student will be able to learn

- Applications of services for different types of buildings
- Design considerations of the lifts, their locations and sizes
- Airconditioning and design considerations of ventilation
- General requirements of fire resisting building
- Electrical services in buildings
- Factors in Noise control in residential building

- Design the required services for different types of buildings
- Implementation and design of the lifts, their locations and sizes
- To bring about an exposure to air conditioning and ventilation
- Provisions to make fire resisting buildings
- Design of Electrical services in buildings
- To study the factors of noise control in residential building

UNIT-I 12HOURS Definitions, Objective and uses of services, Applications of services for different types building considering, Classification 12HOURS															12HO	JRS
of build Arrange	ing servent of	rices ,T f lumin	ypes aries,	of serv Distrib	ices a ution (nd sele of illun	ection ninatio	of ser on, Util	vices, lizatior	Natura	al and a	artificia	l lightin	g princi	ples an	ssification d factors, atural and
Mechan	ical Fac	tors to	be co	nsider	ed in tl		-		ation							
							UNIT-I		<u> </u>						12HO	
parts- L Indicator elevator Dumbw of Conv Control,	Introduction of mechanical services, Lift -Definition, Types of Lifts, Design Considerations, Location, Sizes, Component parts- Lift Well, Travel, Pit, Hoist Way, Machine, Buffer, Door Locks, Suspended Rope, Lift Car, Landing Door, Call Indicators, Call Push, Elevators & Escalators-Different types of elevators and Escalators, Freight elevators, Passenger elevators, Hospital elevators, Uses of different types of elevators Escalators. Dumbwaiters, Different types of Dumbwaiters Uses of different types of Dumbwaiter. Conveyors -Different types of Conveyors, Uses of different types of Conveyors, Air Conditioning-Definition, Purpose, Principles, Temperature Control, Air Velocity Control, Humidity Control, Air Distribution system, Cleaners, Filters, Spray washers, Electric preceptors, Types of Air Conditioners, (Central type, Window Type, Split Unit). UNIT-III Introduction: Causes of fire and Effect s of fire. General Beguirements of Eire Besisting building as per IS and NBC															
UNIT-III 12HOURS																
Introduction: Causes of fire and Effect s of fire, General Requirements of Fire Resisting building as per IS and NBC 2005, Characteristics of Fire resisting materials, Maximum Travel Distance, Fire Fighting Installations for Horizontal Exit, Roof Exit / Fire Lifts, External Stairs, Requirement of good Acoustic, Various sound absolvent, Factors to be																
,System residence Rain wa Significa REFERE	electrical services in the building Technical terms and symbols for electrical installations and Accessories of wiring ,Systems of wiring like wooden casing, cleat wiring, CTS wiring conduit wiring, Types of insulation, electrical layout for residence, small work shop, show room, school building, etc Rain water Harvesting for buildings, Concept of GREEN buildings, Components of GREEN building Introduction and Significance to Grey water, Components of Grey water system, Management of Grey water system. REFERENCE BOOKS 1. Frederick S. Merritt, Jonathan T. Ricketts, Building design and construction Handbook, McGraw-Hill Inc., 5th edition,															
3. M.Da 4. Gurch 5. Shri V 6. BIS, N 7. Shan	vid Egar naran Sir ⁄.K. Jain, lational	n, Arch ngh, Ja Fire S Buildir	itectu gdish afety i ng Cod pok of	ral Aco Singh, n Build le 2005 Air Co	ustics, Water lings, N 5, New nditior	J. Ros Suppl ⁱ Jew ag Delhi, ning ar	s Pub., y & Sai ge publ 2005 nd Refr	, 2007 nitary lishers igerati	Engine , 2010 ion, 2r	eering, n d Edit	Standa tion, Mo	rd Publ	ishers D Hill, 200		ors, 200)7
	1	1	-							10-				1		
Course Code	POS/ COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PSO1	PSO2	PSO3	PSO4
Code COs Image: Code Code Code Image: Code														2 2	3	
M20T E0102	CO2		1					-					-			
			-	-				1	1	3		2	3	2	3	
	CO3		3	3	-	2		-			-		•		5	3
	CO3 CO4		3	3	2	2		-		3	2	1	3			3
	CO3				2	2					2	1 2 2	3 3 3	2	3	3

M20TE0103		L	Т	Р	С
Duration: 16weeks	CONCRETE CONSTRUCTION TECHNOLOGY	2	1	0	3
Duration. 10weeks		2	L	0	5
Prerequisite: Concrete Techno	0,				
COURSE OBJECTIVES: Student	will be able to learn				
 To get a knowledge of 	chemical admixtures and mix design procedure				
To Understand the stre	ength and durability properties				
To understand the cor	ncreting operations and equipment used				
To know different spec	cial concrete operations to be carried out				
To design and fabricat	ion of form work for R.C.C elements.				
To understand the pre	estressed concrete construction principles and statistic	al quality	, contro		
COURSE OUTCOME: After succ	cessful completion of this course the student will be al	ole :			
• To decide the dosage of	of chemical admixtures to be used and mix design pro	cedure			
C C	and durability properties				
	creting operations and equipment to be used				
•	ecial concrete operations to be carried out for specific	requirer	nents		
	ricate the form work for R.C.C elements.	requirer	iiciits		
-					-1
I o implement and dec	ide the prestressed concrete construction principles a	nd statis	tical qua	llity contro	DI
	UNIT-I			12HC	URS
Introduction of Concrete mate	rials, Admixtures, Fly Ash, Polymers, Early Age Propert	ies.			
	bility. Principles of Concrete mix design, Concrete Mix		rocedur	e by: IS/A	CI/British
Standards.	, , ,	0 1			
	UNIT-II			12HC	URS
Concreting Operations-Practic	es and Equipment, batching; Mixing; Transporting; Pla	cing and			
	es and technique of construction for concrete, Fiber	reinfor	ced con	crete, ligh	t weight
concrete, Heavy weight concre	ete, Foam concrete, High performance Concrete.				
	UNIT-III			12HC	URS
	not Crete, grouting, Grunting, under water concreting,				
	e concrete. Construction techniques for reinforced con				-
elements.	abs, columns, Foundations, walls and tanks, design an		ition of	orm wor	TOF R.C.C
elements.	UNIT-IV			12HC	URS
Prestressed concrete constru	ction-Principle, methods, materials, Tools and equi	nment f	or the		
	n and Quality Control of Concrete Construction-Stag				
Controls, procedures.		,	1	,-	
REFERENCE BOOKS					
1. Concrete Techn	ology by M.L. Gambhir				
2. Concrete Techn	ology, by Neville and Brooks				
3. Properties of Co	•				
	structure, Properties and Materials				
P.K. Mehta and PJI					
5. Concrete Techn	ology – M.S. Shetty.				
L					

																-
Course Code	POS/ COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	PSO4
	CO1		3	3	2	1						2	3			2
M20TE	CO2		3	3	2	1						2	3			2
0103	CO3		3	3						2			3			2
	CO4	3	3	3						3			3			1
	CO5	3	3	3						3			3			1
	CO6	3	3	3						3			3			2

Where, 1 (Low), 2 (Medium) and 3 (High) represents strength of correlation between CO and PO.

M20TE0104		L	т	Р	С
Duration: 16weeks	CONSTRUCTION METHODS AND EQUIPMENT	2	1	0	3

Prerequisite: Building Construction

COURSE OBJECTIVES: Student will be able to learn

- To study different methods of excavations and equipment used for excavation.
- To familiarize the elements of equipment cost and appraise the investment strategies.
- To get a knowledge of scaffolding and formwork used for high-rise structures.
- To know the construction and erection techniques for bridges.
- To know the paving methods and equipment used.
- To study the working of the tunnelling and port equipment and apply scientific principles for efficiently utilizing them

- To implement methods of excavations and equipment's for the excavations
- To Implement scaffolding and formwork used for high-rise structures
- To decide the provision of scaffolding and formwork to be used for high rise structures
- To implement construction and erection techniques for bridges
- To implement the highway equipment's for highway construction.
- To decide for implementing the different paving methods and equipments

UNIT-I	12HOURS
Earth Work: Methods: Trenching – Excavations - Braced Excavations – Shafts – Embankments – Dewate	•
compaction methods - Stabilising vertical cuts and slopes. Equipments: Compacting equipments, So	rapers, Dozers,
Hydraulic Excavators, Trenching Machines, Graders, Trimmers, Trucks and hauling equipments - Drag	glines and Cam
Shells.	
UNIT-II	12HOURS
High Rise Structures: Methods and Equipments for foundations (Raft and pile foundations), well found	ations, Shoring,
Scaffolding, Formwork, Cranes and hoisting equipment. Slip form technique for tall chimneys and shafts	•
UNIT-III	12HOURS
Construction and Erection Techniques: Concrete Bridges - In-situ and precast construction methods, Bal	anced

cantilever Methods, Span by Span Method, Incremental launching, Steel Bridges, Cable Stayed Bridges and Suspension Bridge.

UNIT-IV

12HOURS

Highway Construction: Asphalt Plants, Paving Equipments, Tunnels-stages, methods and lining, Grouting Methods. Ports: Types, Breakwaters – berthing structures, mooring accessories – dredgers and dredging methods.

REFERENCE BOOKS

- 1. Antil J.M., Civil Engineering Construction, McGraw Hill Book Co., 1982.
- 2. Peurifoy, R.L., Ledbette. W.B., Construction Planning, Equipment and Methods, McGraw Hill Co., 2000.
- 3. Ratay, R.T., Hand Book of Temporary Structures in Construction, McGraw Hill, 1984.

4. Koerner, R.M., Construction & Geotechnical Methods in Foundation Engineering, McGraw Hill, 1984.

5. Varma, M., Construction Equipment and its Planning & Applications, Metropolitan Book Co., 1979.

6. Smith, R.C, Andres, C.K., Principles and Practice of Heavy Construction, Prentice Hall, 1986.

Course POS/ PO1 PO2 PO3 PO4 PO5 PO6 **PO7** PO8 PO9 PO10 PO11 PSO1 PSO2 PSO3 PSO4 Code COs CO1 3 3 3 2 **M20TE** CO2 3 3 3 2 0104 CO3 3 3 2 3 2 **CO4** 3 3 3 1 3 **CO5** 3 3 1 **CO6** 3 3 3 3 2

Mapping of Course Outcomes with programme Outcomes

Where, 1 (Low), 2 (Medium) and 3 (High) represents strength of correlation between CO and PO

M20TE0105	CONSTRUCTION PROJECT AND	L	Т	Р	С
Duration: 16weeks	MANAGEMENT WITH MSP	2	1	0	3

Prerequisite: Building Planning and Construction

COURSE OBJECTIVES: Student will be able to learn

- Understand the various management techniques for successful completion of construction projects.
- Understand to prepare the project feasibility report economic analysis
- Understand the Importance of Various planning techniques such as CPM and PERT
- Understand the effect of management for project organization with the application MSP
- Time cost management, scheduling and monitoring
- How to perform Resource Planning-Levelling and Allocation

- Apply the management techniques for the successful completion of the project
- Prepare the project feasibility report and analyses the economics of the project
- Prepare various project plans using planning techniques such as Wok break down structure (WBS), Bar charts.
- Implement project organization charts such as bar chart, CPM and PERT
- To provide time cost management, scheduling and implementation
- Perform Resource Planning-Levelling and Allocation

					l	UNIT-I									12HOU	IRS
Introduction:																
Project Mana	-	-	-			tion, I	Role o	f Proje	ect Ma	anager	. Orgar	nizing F	or Con	structio	on - Pri	nciples
of organization	on, type of c	organiz	ation	struct		···· ·										
			<u> </u>			JNIT-I									12HOL	
Project Feasi	• •				-										•	
Economic ana Process, Obje	•	-	•		-					ora	broject	. Projec	t plani	ning Sco	ope: Pi	anning
•						JNIT-II		0							12HOL	IRS
Bar Charts, \	Nork Break	down	Struct	ture, ⁻	Time (estima	ates, A	Applic	ations	of CF	PM and	d PERT	A-O-N	Netwo	ork-Log	gic and
Precedence c	liagrams, ac	dvanta	ges, Di	rawing	g A-O-	N netv	vork f	rom A	-0-A r	netwo	rk and	related	proble	ems.		
					U		V								12HOL	IRS
Time Cost re	lationship: (Direct	and in	direct				mizat	ion of	cost.	related	proble	em. Alle			
Histogram, R							-					•				
related nume				10000			and	ciacee	. p. c.		lojeet	apaati			neerie	
	·															
Scheduling, N	Aonitoring a	and Up	dating	g. Line	of Bal	ance S	Sched	uling.	Resou	rce Pla	anning-	Levelin	ig and A	Allocati	on.	
REFERENCE E	BOOKS															
1. Chitk	ara, K.K. "C	Constru	iction	Projec	ct Mai	nagem	nent: I	Planni	ng, Sc	heduli	ng and	l Contr	ol", Ta	ta McG	iraw-Hi	II
Publi	shing Comp	any, N	ew De	elhi, 19	998.											
 Publishing Company, New Delhi, 1998. Choudhury. S, "Project Management", McGraw-Hill Publishing Company, New Delhi, 1988. 																
	6 Hendricks		-		-		-				tion Fu	indame	ental Co	oncept	s for O	wners,
-	neers, Archi							-		0.						
	th L.S, "PER															
l	Frank Harris	s and R	oland	NICCa	ffer, "	iviode	rn Cor	istruc	tion iv	lanage	ement	- 4theo	ыаски	veli Sci		
		Ν	/lappir	ng of C	Course	Outc	omes	with	progra	mme	Outcor	nes				
Course	POS/COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	PSO4
Code	-															
M20TE0106	CO1		3								2	1	3			2
	CO2															
	CO3	3		3	2				2	3		3	3	3		3
	CO4	3			3	2	1			2	1		3	1	2	3
	CO5	_		-												
	CO6	3		3	2 (11)								3	2	3	3
Wh	ere, 1 (Low	r), 2 (IV	lediun	n) and	3 (Hi	gh) rej	oreser	nts str	ength	of cor	relatio	n betw	een CC) and P	0.	
M20TE0106												L	Т		Ρ	С
Duration: 16	weeks		F	OUND	OATIO	N DES	IGN A	ND CC	ONSTR	UCTIC	DN	2	1		0	3
Prerequisite:	RCC Design	n of Str	ucture	es										•		
COURSE OBJ	ECTIVES: Stu	udent	will be	able t	to lear	'n										
. To loom	mothed of a	tingtin	abces	ing com		مصطحاح	ian -f	challe	u form	dation	c					
	method of es		-		-	and de	sign of	snallo	w roun	uation	5					
	to design diff				-											
	design of raft	-														
	caisson types types of mac		-													
• To learn t	iypes of mac	nnies di				<i>.</i>										

• To learn the mechanism of liquefaction and design of block foundation

COURSE OUTCOME:

After successful completion of this course the student will be able to:

- Estimate bearing capacity and design of shallow foundations
- Design different types of footing
- Design of raft and pile foundations
- Stabilize the caisson foundations with different types
- Design the machine foundations
- Implement the mechanism of liquefaction for designs

UNIT-I 12HOURS Shallow Foundation - Functions and requisites of a foundation - Different types – Bearing capacity determination – Field Tests – Settlement determination – Proportioning of shallow foundation – Design guidelines - Codal recommendations -Construction aspects. **UNIT-II** 12HOURS Raft Foundation - Codal Recommendations - Construction aspects - Ground modification for shallow foundations. **Pile Foundation** - Function – classification of piles – Factors governing choice of pile foundation – Load transfer principles - load evaluation of piles and pile groups - Static method - Dynamic method - pile load test - Under reamed piles - Pile raft system – Laterally loaded piles - Codal Recommendations – Construction aspects. **UNIT-III** 12HOURS **Caisson Foundation** Caissons types - Stability of caissons - Loads - principles of analysis and design - IS Guidelines- Construction aspects. **UNIT-IV** 12HOURS **Machine Foundation** Types of Machines and Foundations – General requirements – Principles of measuring dynamic properties – Field tests – Factors affecting dynamic properties- Mechanism of Liquefaction–Influencing factors-Evaluation of Liquefaction potential – Design of Block Foundation – Codal Recommendations – Construction aspects - Vibration Isolation. **REFERENCE BOOKS** 1. Bowles, J.E., Foundation Analysis and Design, Fifth Edition, McGraw Hill, New York, 1995. 2. Das, B.M., Principles of Foundation Engineering, Design and Construction, Fourth Edition, PWS Publishing, 1999. 3. Vaidyanathan, C.V., and Srinivasalu, P., Handbook of Machine Foundations, McGraw Hill, 1995. 4. Koerner, R.M., Construction & Geotechnical methods in foundation engineering, MGH, New York, 1985 5. Hausmann.M.R. Engineering principles of Ground Modification, mcGraw-Hil 6. Peurifoy, R.L., Ledbette. W.B Construction Planning, Equipment and Methods McGraw Hill Co, 2000 Mapping of Course Outcomes with programme Outcomes Course POS/ **PO1** PO2 PO3 **PO4** PO5 **PO6** PO7 PO8 PO9 PO10 PO11 PSO PSO2 PSO3 PSO4 Code COs 1 3 **CO1** 3 3 3 3 2 2 3 2 **CO2** 3 3 3 3 2 3 2 3 2 M20TE CO3 3 3 3 3 2 3 2 1 1 0106 CO4 3 3 3 2 3 2 3 2 3 3 3 3 2 **CO5** 3 1 **CO6** 3 3 3 3 1 2

M20TE0107		L	Т	Р	С
Duration: 16weeks	CONSTRUCTION MATERIALS LAB	0	0	2	2
Prerequisite: Concrete Tech	nology, Chemical admixtures				
COURSE OBJECTIVES: Stude	nt will be able to learn				
• To gain experience	regarding the determination of properties of o	different bu	uilding ma	terials	
 To provide an oppo materials 	rtunity to learn how to measure the parameter	ers, which §	governs th	e quality o	of the
To Perform Nondes	tructive Testing using Rebound hammer and L	Jltrasonic a	pparatus.		
• To study the effect of	of Mineral and Chemical admixtures of streng	th properti	es of hard	lened conc	rete.
 To impart knowledg 	e of mix design of concrete				
 To gain experimenta 	al knowledge of using bitumen for the paveme	ents			
COURSE OUTCOME: After se	uccessful completion of this course the studer	nt will be al	ole to:		
 Implement good qu 	ality construction techniques.				
 Identify the quality 	of the materials used for construction.				
	e of Nondestructive Testing apparatus using F	Rebound ha	ammer an	d Ultrason	ic.
	ion of the mix design.				
	e of Mineral and Chemical admixtures to imp	prove the p	roperties	of fresh an	d hardene
concrete.					
	f bitumen in the construction of pavements.				
LIST OF EXPERIMENTS:					
1. Mix Design of Concrete					
2. Tests on fresh concrete					
Tests on hardened concre	te				
4. In-situ Strength determin	ation by Rebound Hammer.				
5. Measurement of Moistur	e content in aggregates, soil and hardened co	ncrete surf	ace using	NDT techr	iques.
6. Pull-Out Tests on concret	e				
7. Effect of Chemical admixt	ures on fresh and harden properties of concre	ete			
8. Effect of mineral admixtu	res on fresh and harden properties of concret	e			
9. Tests on Bitumen materia	als				
10. Tests on Course aggrega	tes for road construction				
REFERENCE BOOKS:					
	. P. J. M. " CONCRETE", Microstructure, Pro	perties and	d Materia	ls. Third E	dition. Tat
-	npany Limited, New Delhi, 2006			-, -	,
•	Technology, Theory and Practice", Revised	Edition S	Chand 8	company	Itd Nev
Delhi,2006				c company	2001, 1101
	s of Concrete", 4th Edition Longman,1995				
\mathcal{S}	s of concrete, 4th cutton conginal, 1555				
4) Mindass and Young, " Cor	ocrete" Prentice Hall 1008				

Course	POS/C	PO	PO1	PO1	PSO	PSO	PSO	PSO								
Code	Os	1	2	3	4	5	6	7	8	9	0	1	1	2	3	4
	CO1		3	2	3		2	2	1	1			3	2	3	1
	CO2		3	2	3		2	2	1	1			3	2	3	1
M20TE0	CO3	3	2	3	3	2	1		3	2		2	3	1	3	2
108	CO4	3	3	3	3	2	1			3			3	2	3	2
	CO5	3	3	3	3	2	1			3			3	2	3	2
	CO6	3	2	3	3	3		2	3				3	2	3	3

Where, 1 (Low), 2 (Medium) and 3 (High) represents strength of correlation between CO and PO.

M20TE0108	Mini Project-I	Practical/Report		0	0	2	2	2
-----------	----------------	------------------	--	---	---	---	---	---

The student is required to carry out a mini project individually on experimental investigation on Special concretes specimens and gain the knowledge on material characteristics

SECOND SEMESTER

	SECOND SEIVESTER				
M20TE0201		L	Т	Р	С
Duration: 16weeks	COMPOSITE MATERIALS	2	1	-	3
Prerequisite: Building M	aterials		1	1	
COURSE OBJECTIVES: Stu	udent will be able to learn				
 To obtain the know 	wledge on composite materials and its action	on.			
To implement the	e concept of composite materials.				
 To understand th 	e behaviour of load bearing mechanism and	designs.			
 To understand by structures. 	y Analogy on Flexible, rigid connections an	d seismic b	ehavio	ur of co	mposite
• To understand th	e behaviour of box girder bridges.				
 To apply the designation 	gn concepts.				
COURSE OUTCOME: Afte	er successful completion of this course the s	tudent will	be able	to:	
Knowledge on co	mposite materials and its action.				
 Implement the co 	oncept of composite materials.				
 Understand the b 	ehaviour of load bearing mechanism and de	esigns.			
 Analogy on Flexib 	le, rigid connections and seismic behaviour	of composi	ite struc	ctures.	
 Understand the b 	ehaviour of box girder bridges.				
Apply design cond	cepts.				
	UNIT-I			12	HOURS
	ncrete composite construction - theory of o	•			•
-	pmposite beam action- Introduction to steel				h
construction. Materials in	n composite construction- profiled steel deck	ing-tabricat	ted sect		
	UNIT-II				HOURS
and strength of shear cor	-behaviour-load bearing mechanism-failure nnectors. Design of Composite members – si posite columns: Types-Design of concrete	mply suppo	orted sla	abs – sin	nple and

tubular columns. Design of Composite trusses.

UNIT-III

12HOURS

Connections in Composite construction- flexible and rigid connections- moment resisting connections. Seismic behaviour of composite structures.

UNIT-IV

12HOURS

Composite Box Girder Bridges: Introduction - behaviour of box girder bridges - design concepts. Case studies: Case studies on steel-concrete composite construction in buildings and bridges.

REFERENCE BOOKS

1. Johnson R.P, Composite structures of steel and concrete, Blackwell Scientific Publications (Second Edition), UK, 1994.

2. Owens, G.W. and Knowles.P, Steel Designers manual (Fifth edition), Steel Concrete Institute (UK), Oxford Blackwell Scientific Publications, 1992.

3. Nethercot, D.A. Composite Construction, Spon Press, London, 2003.

4. Oehlers.O.J, Bradford, M.A. Elementary Behavior of Composite Steel and Concrete structural

members, Butterworth-Heinemann, London, 1999.

Mapping of Course Outcomes with programme Outcome

Course Code	POS /COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PSO 1	PSO 2	PSO 3	PSO4
	CO1	3	3	3	2	1				1			3			2
	CO2	3	3	3	2	1				1			3			2
MOOTEOO	CO3	3	3	3		2				2		2	3	2	1	2
M20TE02 01	CO4	3	3	3	2	3				3	3	1	3			2
	CO5	3	3	3	2	3				3	3	1	3			2
	CO6	3	3	3		2				3		2	3		2	2

M20TE0202		L	Т	Р	С
Duration: 16weeks	CONSTRUCTION COSTING AND				
	FINANCIAL MANAGEMENT	2	1	-	3
Prerequisite: Estimation a	nd Costing, Engineering Economics				
COURSE OBJECTIVES: Stud	ent will be able to learn				
• Scope for financial	management and supply-demand mechanism				
 Production and cos 	t theory analysis and pricing				
• To prepare fund flo	w statement and analyse budgetary control				
• Time value for mon	ey and discounted cash flow				
Accounting informa	ition and application in construction industry				
• The Legal aspects o	f financial management in construction industry.				

 Implement financial management and supply-demand mechanism 	
 Implement the knowledge of budgetary control 	
 Application of Production and cost theory analysis and pricing 	
 Value for time management and getting discounts 	
Implementation in the construction industry	
UNIT-I	12HOURS
Financial Management; Meaning and Scope, Economics and Scope, Supply and Demand Me and forecasting. Balance sheet, profit & loss account, fund flow statement	echanism, analysis
UNIT-II	12HOURS
Production and Cost theory, analysis. Pricing; objectives, determinants, absorption, Financial analysis, Decisions. Capital Budgeting, budgetary control, standard costing and var appraisal Practical problems and case studies	
UNIT-III	12HOURS
Engineering economics, Time value of money, discounted cash flow, NPV, ROR, Bases Incremental analysis, Benefit-Cost analysis, Replacement analysis, Breakeven analysis, C Taxation and Inflation, Working capital management, Construction accounting, Income statement, Financial statements.	•
UNIT-IV Construction Finance: Accounting information and application, Financial versus econ financial statements and project appraisal. Project yield, taxation and inflation, risk and und activities; finance and working capital, depreciation and amortization; cost control, perform	certainty, Turnkey mance budgeting,
UNIT-IV Construction Finance: Accounting information and application, Financial versus econ financial statements and project appraisal. Project yield, taxation and inflation, risk and und	nomic evaluation, certainty, Turnkey mance budgeting, f credit, financing
UNIT-IV Construction Finance: Accounting information and application, Financial versus econ financial statements and project appraisal. Project yield, taxation and inflation, risk and und activities; finance and working capital, depreciation and amortization; cost control, perform equipment rentals.Bidding and awards, work pricing, cost elements of contracts, letters of plans, multiple sources of finance. Qualifying, bidding, bidders, comparing the bids unforeseen revisions, costs and rates escalation, cost progress reporting. Legal aspects	nomic evaluation, certainty, Turnkey mance budgeting, of credit, financing a, under- writing.
UNIT-IV Construction Finance: Accounting information and application, Financial versus econ financial statements and project appraisal. Project yield, taxation and inflation, risk and und activities; finance and working capital, depreciation and amortization; cost control, perform equipment rentals.Bidding and awards, work pricing, cost elements of contracts, letters of plans, multiple sources of finance. Qualifying, bidding, bidders, comparing the bids unforeseen revisions, costs and rates escalation, cost progress reporting. Legal aspects REFERENCE BOOKS	nomic evaluation, certainty, Turnkey mance budgeting, of credit, financing a, under- writing.
UNIT-IV Construction Finance: Accounting information and application, Financial versus econ financial statements and project appraisal. Project yield, taxation and inflation, risk and und activities; finance and working capital, depreciation and amortization; cost control, perform equipment rentals.Bidding and awards, work pricing, cost elements of contracts, letters of plans, multiple sources of finance. Qualifying, bidding, bidders, comparing the bids unforeseen revisions, costs and rates escalation, cost progress reporting. Legal aspects REFERENCE BOOKS 1. Blank, L. T. and Tarquin, A. J., "Engineering Economy", Fourth Edition, WCB/McGraw-Hill,	nomic evaluation, certainty, Turnkey mance budgeting, of credit, financing a, under- writing. 1998.
UNIT-IV Construction Finance: Accounting information and application, Financial versus ecor financial statements and project appraisal. Project yield, taxation and inflation, risk and und activities; finance and working capital, depreciation and amortization; cost control, perform equipment rentals.Bidding and awards, work pricing, cost elements of contracts, letters o plans, multiple sources of finance. Qualifying, bidding, bidders, comparing the bids unforeseen revisions, costs and rates escalation, cost progress reporting. Legal aspects REFERENCE BOOKS 1. Blank, L. T. and Tarquin,A. J., "Engineering Economy", Fourth Edition, WCB/McGraw-Hill, 2. Bose, D. C., "Fundamentals of Financial management", 2nd ed., PHI, New Delhi, 2010. 3. Boyer, C.B. and Merzbach, U. C., "A History of Mathematics", 2nd ed., John Wiley & Sons 1989. 4. Gould, F.E., "Managing the Construction Process", 2nd ed., Prentice Hall, Upper Saddle Ri	nomic evaluation, certainty, Turnkey mance budgeting, of credit, financing , under- writing. 1998.
UNIT-IV Construction Finance: Accounting information and application, Financial versus ecor financial statements and project appraisal. Project yield, taxation and inflation, risk and und activities; finance and working capital, depreciation and amortization; cost control, perform equipment rentals.Bidding and awards, work pricing, cost elements of contracts, letters of plans, multiple sources of finance. Qualifying, bidding, bidders, comparing the bids unforeseen revisions, costs and rates escalation, cost progress reporting. Legal aspects REFERENCE BOOKS 1. Blank, L. T. and Tarquin,A. J., "Engineering Economy", Fourth Edition, WCB/McGraw-Hill, 2. Bose, D. C., "Fundamentals of Financial management", 2nd ed., PHI, New Delhi, 2010. 3. Boyer, C.B. and Merzbach, U. C., "A History of Mathematics", 2nd ed., John Wiley & Sons	nomic evaluation, certainty, Turnkey mance budgeting, of credit, financing , under- writing. 1998. 5, New York,
UNIT-IV Construction Finance: Accounting information and application, Financial versus ecor financial statements and project appraisal. Project yield, taxation and inflation, risk and und activities; finance and working capital, depreciation and amortization; cost control, perform equipment rentals.Bidding and awards, work pricing, cost elements of contracts, letters of plans, multiple sources of finance. Qualifying, bidding, bidders, comparing the bids unforeseen revisions, costs and rates escalation, cost progress reporting. Legal aspects REFERENCE BOOKS 1. Blank, L. T. and Tarquin,A. J., "Engineering Economy", Fourth Edition, WCB/McGraw-Hill, 2. Bose, D. C., "Fundamentals of Financial management", 2nd ed., PHI, New Delhi, 2010. 3. Boyer, C.B. and Merzbach, U. C., "A History of Mathematics", 2nd ed., John Wiley & Sons 1989. 4. Gould, F.E., "Managing the Construction Process", 2nd ed., Prentice Hall, Upper Saddle Ri 2002.	nomic evaluation, certainty, Turnkey mance budgeting, of credit, financing , under- writing. 1998. 5, New York,
UNIT-IV Construction Finance: Accounting information and application, Financial versus ecor financial statements and project appraisal. Project yield, taxation and inflation, risk and und activities; finance and working capital, depreciation and amortization; cost control, perform equipment rentals.Bidding and awards, work pricing, cost elements of contracts, letters o plans, multiple sources of finance. Qualifying, bidding, bidders, comparing the bids unforeseen revisions, costs and rates escalation, cost progress reporting. Legal aspects REFERENCE BOOKS 1. Blank, L. T. and Tarquin,A. J., "Engineering Economy", Fourth Edition, WCB/McGraw-Hill, 2. Bose, D. C., "Fundamentals of Financial management", 2nd ed., PHI, New Delhi, 2010. 3. Boyer, C.B. and Merzbach, U. C., "A History of Mathematics", 2nd ed., John Wiley & Sons 1989. 4. Gould, F.E., "Managing the Construction Process", 2nd ed., Prentice Hall, Upper Saddle Ri 2002. 5. Gransberg, D. G., Popescu, C. M. and Ryan, R. C., "Construction Equipment Management	nomic evaluation, certainty, Turnkey mance budgeting, of credit, financing , under- writing. 1998. 5, New York, iver, New Jersey, for

Course Code	POS/CO s	PO 1	PO 2	РО 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PSO 1	PSO 2	PSO 3	PSO 4
	CO1	3	3	3		1	2	3	2			2		3		
	CO2	3	3	3		1	2	3	2			2		3		
M20TE0	CO3	3	3	3		2	3					1	2	3	1	
202	CO4	3	3	3	2		3		1					3	2	
	CO5	3	3	3		3		1				3			2	
	CO6	3	3	3		3		1				3			2	
	Where, 1 (Low), 2 (Medium) and 3 (High) represents strength of correlation between CO and PO.															

M20TES211		L	Т	Р	С
Duration: 16weeks	BRIDGE ENGINEERING	2	1	-	3
Prerequisite: Design of RCC	Cand PSC structures				
COURSE OBJECTIVES: Stude	ent will be able to learn				
Construction of subs	structures such as pile foundations				
• Pile concreting unde	er various soil conditions and Testing of Piles	5			
Caisson construction	n and sinking methods				
Construction of supe	erstructure in reinforced , Composite and Pr	e-stressec	l concret	e	
Construction technic	ques of different superstructures and segm	ental cons	truction		
• Cable Profiling in Su	perstructures of bridges in deck section				
COURSE OUTCOME: After s	uccessful completion of this course the stud	dent will b	e able to	:	
	truction of substructures such as pile found				
-	f Piles and concreting under various soil cor				
	onstruction and sinking methods				
-	Techniques of methods of construction of	superstri	icture ir	reinfor	red
-	ssed concrete construction	Superser			
•	truction of box girder deck slab and segmer	tal constru	uction K	nowledg	e of Cable
Profile in deck section.				lowicus	
	truction of box girder deck slab and segmer	ntal constr	uction		
	UNIT-I		action	121	IOURS
soil exploration techniques. Pi durability problems in pile co	for Bridges: Pile foundations – site investigation ling methods – pile types – pile driving methods onstruction – integrity testing – pile testing. S le cap. Pile concreting under various soil conditi	– non-disp pacing of P	lacement	ion – in-s piles – n	situ testing nicro piles -
	UNIT-II			12	IOURS
floating caisson to sinking site - excavation method - de-wat	Caisson construction and sinking methods - co - bed preparation - supporting structures - lowe ering for freeing a 'hanging' caisson. Sand Blow s - construction details of pneumatic sinking of m plugging	ring caissor -jetting and	ns - sinkin d lubricat	g open W ion - rect	ell caisson
	UNIT-III			12	IOURS
Construction of superstructure	e - reinforced concrete superstructure- prestres	sed concret	to supors		

and steel superstructure - special superstructures. Geometrical alignment - lighting - Drainage - traffic lane width, road width, footpaths, and clearance for vehicles / boats - road kerb, crash barrier, parapet and handrail - expansion and roadway joints -super-elevation.

UNIT-IV

12HOURS

Slab, T-beam and Box girder deck slab construction: Slab type, T-beam and box-girder bridges Decks Construction methods. Span lengths -deck and stiffening system.Segmental Construction, Cantilever Construction and Successive Launching- Precast segmental construction for long-span bridges- cables and their profiling - deck section - soffit surface -deflection and pre-camber - expansion joint - bearings - aesthetics

REFERENCE BOOKS

1. Chew Yit Lin, Michael, Construction Technology for Tall Buildings (2nd Ed.), Singapore University Press, World Scientific, Hong Kong, 2001.

- 2. Victor.D.J, Essentials of Bridge Engineering, Oxford IBH, 2001
- 3. Ponnuswamy.S, Bridge Engineering, Tata McGraw Hill, 1989.

4. Raina V.K. Concrete Bridge practice, Tata McGraw Hill Publishing Co., 1991

5. Derrick Beckett, An Introduction to Structural Design of Concrete Bridges, Surry University Press, Oxford Shire, 1973.

6. Fleming. W. G. K., et al., Piling Engineering, Surrey University Press, London, 1985.

Mapping of Course Outcomes with programme Outcomes

Course Code	POS/ COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	PSO4
	CO1		3	3						3		2	3	2	3	
	CO2		3	3						3		2	3	2	3	
	CO3		3	3				1		3		2	3	2	3	3
M20TE S211	CO4		3	3	2	2				3	2	1	3			
5211	CO5		3	3						3		2	3	2	3	
	CO6		3	3						3		2	3	2	3	

Where, 1 (Low), 2 (Medium) and 3 (High) represents strength of correlation between CO and PO.

M20TES212	PAVEMENT DESIGN , CONSTRUCTION	L	Т	Р	С
Duration: 16weeks	AND MANAGEMENT	2	1	-	3

Prerequisite: Transportation Engineering

COURSE OBJECTIVES: Student will be able to learn

- To develop a fundamental understanding of the Pavement Materials used for road construction
- To know the different types of pavements and their functions
- To learn about the various construction procedures of both Flexible and Rigid pavements.
- To understand the design of flexible pavements as per Indian Roads Congress standards and AASHTO standards
- To understand the design of rigid pavements as per Indian Roads Congress standards and AASHTO standards
- To understand the embankment constructions

- Implement the different types of pavements and their functions as per requirements.
- To design of flexible pavements as per Indian Roads Congress standards and AASHTO standards.
- Understand the material characteristics and selection criteria for the use in pavement design.

- To design of rigid pavements as per Indian Roads Congress standards and AASHTO standards.
- Explain the techniques and principles followed in concrete road construction.
- To implement the construction steps for embankment constructions.

UNIT-I	12HOURS
Factors Affecting Pavement Design, Types of Pavements, Functions of Individual Layers	, Classification of
Legal Axle and Gross Weights. Tire Pressure, Contact Pressure, EAL and ESWL Concept, L	ane Distributions
and Vehicle Damage Factors, Subgrade support - CBR and plate bearing tests, CSA. Numeri	cal examples
UNIT-II	12HOURS
Design of Flexible Pavements: Design methods and principle, design steps, advantages and	nd applications of
different pavement design methods. IRC: 37-2001, AASHTO and Asphalt Institute metho	ods.Specifications
and guidelines. Numerical examples. UNIT-III	12HOURS
-	
Design of Rigid Pavements: IRC: 58-2011 Method of design by stress ratio method. Design	•
reinforced concrete pavements and airfield pavements. Design of joints. Sp	ecifications and
guidelines.Design features of CRCP, SFRC and ICBP- Numerical examples.	
UNIT-IV	12HOURS
Embankment Construction: Specifications and steps for the construction of road in emba	inkment and cut.
construction steps for sub grade and preparation of sub grade.	,
MANAGEMENT	
REFERENCE BOOKS	
	Bros, Roorkee.
1. Khanna, S.K., Justo, C.E.G., and Veeraragavan, A., `Highway Engineering', NemChandand	
1. Khanna, S.K., Justo, C.E.G., and Veeraragavan, A., `Highway Engineering', NemChandand 2. Yoder, E.J., and Witzack, 'Principles of Pavement Design', 2nd Edition, John Wiley and S	
1. Khanna, S.K., Justo, C.E.G., and Veeraragavan, A., `Highway Engineering', NemChandand 2. Yoder, E.J., and Witzack, 'Principles of Pavement Design', 2nd Edition, John Wiley and S 3. Yang H.Huang, 'Pavement Analysis and Design', Prentice Hall Inc.	
 Khanna, S.K., Justo, C.E.G., and Veeraragavan, A., `Highway Engineering', NemChandand 2. Yoder, E.J., and Witzack, 'Principles of Pavement Design', 2nd Edition, John Wiley and So 3. Yang H.Huang, 'Pavement Analysis and Design', Prentice Hall Inc. Yang, "Design of functional pavements"- McGraw Hill Book Co. 	
1. Khanna, S.K., Justo, C.E.G., and Veeraragavan, A., `Highway Engineering', NemChandand 2. Yoder, E.J., and Witzack, 'Principles of Pavement Design', 2nd Edition, John Wiley and S 3. Yang H.Huang, 'Pavement Analysis and Design', Prentice Hall Inc.	

Course Code	POS/C Os	РО 1	Р 02	Р 03	Р 04	Р 05	Р 06	Р 07	Р 08	PO 9	PO1 0	PO1 1	PSO 1	PSO 2	PS O3	PSO 4
	CO1	3	3	3		1							3			3
	CO2	3	3	3		1							3			3
	CO3	3	3	3	3	3				3			3	3	3	
M20TE S212	CO4	3	3	2	3	3				3			3	3	3	
5212	CO5	3	3	3	2		2						3	3		
	CO6	3	3	3	2		2						3	3		

M20TES2			L	Т	Р	0
21	ENVIRONMENTAL	ENGINEERING A	ND			
Duration:	MANAGEMENT		2	1		3
16weeks			Z	1	-	
Prerequisite	Environmental Engine	ering		·		
COURSE OBJ	ECTIVES: Student will b	be able to learn				
• Cond	cepts of environmental	impact assessment				
• Unic	ue pollution problems	and public participation	on			
• The	EIA Regulations in India	ł				
• Mea	surement of environme	ental impact and orga	nisation			
• Envi	ronmental managemer	nt, principles and strat	egies			
• The	Concepts of Environme	ental audit				
	TCOME: After successfu	•			e able to:	
 Impl 	ement the assessment	techniques for environment	onmental impac	t		
• Mea	sure the pollution level	and suggest solution	to the problem	s and p	ublic participation	
 Impl 	ement the EIA Regulati	ions				
 Orga 	inise systematically to i	mplement the methor	dologies for asse	essment	•	
 Appl 	y the principles and str	ategies for environme	ntal manageme	nt		
 Impl 	ement the Concepts of	Environmental audit				
		UNIT-I			12HOUF	RS
	tal impact assessment		finitions and co	ncepts,	rationale and histo	rica
•	t of EIA, EIA for civil eng	-			increase statement	
•	onents of EIA: Initial e tal appraisal, environme				•	
environmen		UNIT-II		luciatio	12HOUF	R
Broad comp	onents of EIA:Pertinent		tion, unique po	llution r		
•	ic participation technic		, , ,		, 0	
visual impac	ts, geographical study a	area.				
	in India: EIA Regulati		• •	ojects a	nd other projects.	Case
studies from	hydropower projects,		and mining.		4211011	.
N 4 - 1		UNIT-III				
-	ies: Measurement of environmental factors.		-	•	-	
•	atrix, uniqueness rat		•		•	
••	ive environmental imp	•	•			•
-	uation species, proposir			Ũ		
		UNIT-IV			12HOUR	RS
	tal management: Princ	ciples, problems and	strategies; Rev	iew of	political, ecological	an
Environment	tions. Future strategies	s; multidisciplinary er	nvironmental st	rategies	, the human, planr	ning
remedial act						
remedial act decision-ma	king and management					
remedial act decision-ma			audit, complia	nce au	dit, methodologies	an

REFERENCE BOOKS

TEXTBOOKS:

- 1. Canter, R.L., "Environmental Impact Assessment", McGraw Hill Inc., New Delhi, 1996.
- 2. Shukla, S.K. and Srivastava, P.R., "Concepts in Environmental Impact Analysis", Common Wealth Publishers, New Delhi, 1992.

REFERENCES:

- 1. John G. Rau and David C Hooten "Environmental Impact Analysis Handbook", McGraw Hill Book Company, 1990.
- 2. "Environmental Assessment Source book", Vol. I, II & III. The World Bank, Washington, D.C., 1991.
- 3. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I & II", Blackwell Science, 1999.

Mapping of Course Outcomes with programme Outcomes

Course Code	POS/ COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	PSO4
	CO1		3	3						3		2	3	2	3	
	CO2		3	3						3		2	3	2	3	
M20TE	CO3		3	3				1		3		2	3	2	3	3
S221	CO4		3	3	2	2				3	2	1	3			
	CO5		3	3						3		2	3	2	3	
	CO6		3	3						3		2	3	2	3	

M20TES222	SPECIAL CONCRETES	L	Т	Р	С
Duration: 16weeks	SPECIAL CONCRETES	2	1	-	3
Prerequisite: Concrete Technol	ology	I	•	•	•
COURSE OBJECTIVES: Student	t will be able				
• To learn the various ty	pes of alternative cement materials and ac	lmixtures			
• To understand the know	owledge of light weight concrete and its miz	x design.			
• To know about High D	ensity concrete and Ferro-cement				
 To gain knowledge ab 	out fibre reinforced concrete and its proper	rties			
• To learn about High p	erformance concrete, properties and applic	ations			
• To familiarise about o	ther special types of concretes				
COURSE OUTCOME:					
After successful completion of	of this course the student will be able:				
• To identify the constit	uents of cement, other cementitious mater	rials and adn	nixtures		
To enumerate the cor	cept of light weight concrete and demonst	rate its mix o	design		
 To explain about High 	Density concrete and Ferro-cement				
• To describe about fibr	e reinforced concrete and its properties				
 To explain High performance 	mance concrete, properties and application	ns			
To categorise special t	types of concretes				
	UNIT-I			1	2HOURS
	ete and developments in the process and c d cement replacement materials, pozzolo				

recycled aggregates, chemical admixtures. Mix proportioning of Concrete: Principles and methods.Light Weight concrete: Introduction, classification, properties, strength and durability, mix proportioning and problems. UNIT-II 12HOURS High density concrete: Radiation shielding ability of concrete, materials for high density concrete, mixproportioning, properties in fresh and hardened state, placement methods. Ferro cement: Ferrocement materials, mechanical properties, cracking of ferrocement, strength and behaviour in tension, compression and flexure, Design of ferrocement in tension, ferrocement constructions, durability, and applications. UNIT-III 12HOURS Fibre reinforced concrete: Fibre materials, mix proportioning, distribution and orientation, interfacial bond, properties in fresh state. Strength and behaviour in tension, compression and flexure of steel fibre reinforced concrete, mechanical properties, crack arrest and toughening mechanism, applications. UNIT-IV 12HOURS High Performance concrete: constituents, mix proportioning, properties in fresh and hardened states, applications and limitations. Ready Mixed Concrete, Self Compacting Concrete, Self Curing Concrete, Reactive powder concrete, Bacterial Concrete. **REFERENCE BOOKS** 1.Neville A.M, "Properties of Concrete" Pearson Education Asis, 2000 2.P. Kumar Mehta, Paul J.N.Monterio, CONCRETE, "Microstructure, Properties and Materials"-Tata McGraw Hill 3.A.R.Santhakumar, (2007) "Concrete Technology"-Oxford University Press, New Delhi, 2007. 4.Short A and Kinniburgh.W, "Light Weight Concrete"- Asia Publishing House, 1963 5.Aitcin P.C. "High performance concrete"-E and FN, Spon London 1998 6.Rixom.R. and Mailvaganam.N., "Chemical admixtures in concrete"- E and FN, Spon London 1999

Course Code	POS /COs	РО 1	PO 2	PO 3	РО 4	PO 5	РО 6	РО 7	РО 8	РО 9	PO1 0	PO1 1	PSO 1	PSO 2	PSO 3	PSO4
	CO1		3	3						2		2	2		2	
	CO2		3	3						2		2	2		2	
M20TE	CO3		3	3	3	1		2		2	1	2	3	2	3	1
S222	CO4	3	3	3	3	1		2		2	1	2	3	2	3	1
	CO5	3	3	3	3	1		2		2	1	2	3	2		
	CO6	3	3	3	3	1		2		2	1	2	3	2		

Mapping of Course Outcomes with programme Outcomes

M20TES231		L	Т	Р	С
Duration: 16weeks	CONSTRUCTION PLANNING AND CONTROL	2	1	-	3
Prerequisite: Building Planr	ning and Construction, Concrete Technology	/			
COURSE OBJECTIVES: Stude	ent will be able to learn				
• How to plan for Reso	ource Planning				
Utilization of actual	resources required and tools of measureme	ent of resou	urces		
• Time of purchase an	d quantity of materials and distribution				
• Time and planning n	nanagement				
Quality of materials					
•	umentation and Reporting				
	uccessful completion of this course the stud	dent will be	e able to:		
	e Planning and Procurement.				
•	irces required and tools of measurement of	resources			
·	ienting the quantity of materials and distrib				
·	l planning management				
	e quality of materials to be maintained				
•	Report for Quality Control.				
	UNIT-I			12	HOURS
Resources: Systems approa neasurement of actual reso	cost control. Types of resources, manpower ch in resource management, characteristics ources required. Tools for measurement of r dule, optimum use of labour.	of resourc	ces, Reso	urces, L	Itilization
	UNIT-II			12	HOURS
			ry and Dis		n
-	, Quantity of material, sources, Transportati lecting by optimistic choice with respect to o		Source a	ind hand	
-	· · · · ·		Source a		
Equipment: Planning and se Time: Personnel time, Mana Critical path measuring the	lecting by optimistic choice with respect to	cost, Time, ne project,	forecast	12I ing the	dling. HOURS future,
Equipment: Planning and se Time: Personnel time, Mana Critical path measuring the	lecting by optimistic choice with respect to UNIT-III agement and planning, Managing time on th	cost, Time, ne project,	forecast	12 ing the rol, obje	dling. HOURS future,
Equipment: Planning and se Fime: Personnel time, Mana Critical path measuring the cost, Time and Quality. Quality control:Constructio Field Tests and Frequency ncluding Documentation a Deficiency Report, Sample (lecting by optimistic choice with respect to o UNIT-III agement and planning, Managing time on th changes and their effects. Cost control: Cash UNIT-IV n Quality Control Inspection Program Control of Testing, Field Laboratory or Commerce and Reporting, Sample Report Forms Nor	cost, Time, ne project, n flow and o tent and P ial Testing	forecast cost cont roposed Facilitie	121 ing the rol, obje 121 Outline s, Inspe	dling. HOURS future, ectives of HOURS e for QCIF ction Pla
Equipment: Planning and se Fime: Personnel time, Mana Critical path measuring the cost, Time and Quality. Quality control:Constructio Field Tests and Frequency ncluding Documentation a Deficiency Report, Sample C REFERENCE BOOKS	lecting by optimistic choice with respect to o UNIT-III agement and planning, Managing time on th changes and their effects. Cost control: Cash UNIT-IV n Quality Control Inspection Program Control of Testing, Field Laboratory or Commerce and Reporting, Sample Report Forms Nor	cost, Time, ne project, n flow and o tent and P ial Testing	forecast cost cont roposed Facilitie	121 ing the rol, obje 121 Outline s, Inspe	dling. HOURS future, ectives of HOURS e for QCIF ction Pla

3. Harvey, A. Levine, Project Management using Micro Computers, Obsome-McGraw Hill C.A. Publishing Co., Inc. 1988,

4. James, A., Adrain, Qauntitative Methods in Construction Management, American Elsevier Publishing Co., Inc. 1973.

Course	POS/C	PO	PO1	PO1	PSO	PSO	PSO	PSO								
Code	Os	1	2	3	4	5	6	7	8	9	0	1	1	2	3	4
	CO1	3	3	3		2				2		2		3		3
	CO2	3	3	3		2				2		2		3		3
M20TES	CO3	3	3	3				2		2		2	3			1
231	CO4	3	3	3	2							2		2	3	
	CO5	3	3	3							3	2	3	2		1
	CO6	3	3	3							3	2	3	2		1

Mapping of Course Outcomes with programme Outcomes

Where, 1 (Low), 2 (Medium) and 3 (High) represents strength of correlation between CO and PO.

M20TES232		L	Т	Р	C
Duration: 16weeks	GREEN BUILDING TECHNOLOGY	2	1	-	3

Prerequisite: Concrete Technology

COURSE OBJECTIVES: Student will be able to learn

- To implement the life cycle impacts of materials and products and adopt sustainable design concepts.
- To obtain the Knowledge on Strategies to utilize solar energy & its impacts on building energy.
- To simulate the building energy and design for efficiency.
- To adopt indoor environmental quality management.
- To apply energy conservation technique on plug loads.
- To Implement the green building concepts.

COURSE OUTCOME: After successful completion of this course the student will be able to:

- Implement the life cycle impacts of materials and products and adopt sustainable design concepts.
- Knowledge on Strategies to utilize solar energy & its impacts on building energy.

UNIT-I

- Simulate the building energy and design for efficiency.
- To adopt indoor environmental quality management.
- Apply energy conservation technique on plug loads.
- Implementation of green building concepts.

Introduction : Life Cycle impacts of materials and products – sustainable design concepts – strategies of Design for the Environment -The sun-earth relationship and the energy balance on the earth's surface, climate, wind – Solar radiation and solar temperature – Sun shading and solar radiation on surfaces – Energy impact on the shape and orientation of buildings – Thermal properties of building materials.

12HOURS

UNIT-II	12HOURS
Energy Efficient Buildings : Passive cooling and day lighting – Active solar and photovoltaic- B	uilding energy
analysis methods- Building energy simulation- Building energy efficiency standards- Lighting s	ystem design-
Lighting economics and aesthetics- Impacts of lighting efficiency – Energy audit and energy tai	geting-
Technological options for energy management.	
UNIT-III	12HOURS

Indoor Environmental Quality Management : Psychometric- Comfort conditions- Thermal comfort- Ventilation and air quality-Air conditioning requirement- Visual perception- Illumination requirement- Auditory requirement-Energy management options- -Air conditioning systems- Energy conservation in pumps- Fansand blowers-Refrigerating machines- Heat rejection equipment- Energy efficient motors- Insulation.

-
12HOURS
des. – Material
rtation- Water
ns, 2005
ducation,
)

REFERENCES:

- 1. Colin Porteous, "The New Eco-Architecture", Spon Press, 2002.
- 2. Energy Conservation Building Codes: www.bee-india.nic.in
- 3. Lever More G J, "Building Energy Management Systems", E and FN Spon, London, 2000.
- 4. Ganesan T P, "Energy Conservation in Buildings", ISTE Professional Center, Chennai, 1999.
- 5. John Littler and Randall Thomas, "Design with Energy: The Conservation and Use of Energy in Buildings", Cambridge University Press, 1984.

Course Code	POS/ COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	PSO4
	CO1	3	3						3	3		3	3		2	3
	CO2	3	3						3	3		3	3		2	3
M20TE	CO3	3		3		2			2	1	2	2	3	3	3	2
S232	CO4	3			2			2					2	2		1
	CO5	3			2			2					2	2		1
	CO6	3		3					3	3		3	3		2	3

Mapping of Course Outcomes with programme Outcomes

M20TES233		L	Т	Р	С
Duration: 16weeks	MODERN CONSTRUCTION MATERIALS	2	1	-	3
Prerequisite: Concrete Tech	nnology				
COURSE OBJECTIVES: Stude	ent will be able to learn				
 Properties and spec 	ifications of concrete making materials				
 Properties of harde 	ned concrete- mechanical properties and durabil	ity aspe	cts		
Different concreting	g techniques and types of concretes				
 Use of waste indust 	rial waste products				
 Concept of painting 	and varnishing				
Various Repair mate	erials for smart concrete structures.				
COURSE OUTCOME: After s	uccessful completion of this course the student v	vill be a	ble to:		
 Implementing the s 	pecifications for concrete making materials				
Understand the Me	chanical and Durability Characteristics of harden	ed conc	rete.		
Practical implement	tation of concreting techniques				
 Practicing the wast 	e industrial waste products				
Application of pain	ting and varnishing				

 Apply the knowledge various Repair materials for smart concrete structures. 	
UNIT-I	12HOURS
Properties and specifications of concrete making material – alternatives of cement – alternatives	of aggregates.
Properties of fresh concrete. Modern techniques in handling- compacting and curing concretes -	Properties of
hardened concrete- mechanical properties and durability aspects. Additives and admixtures of co	oncrete.
UNIT-II	12HOURS
Materials and methods: Hot and cold weather concreting – underwater concreting - mass concre	
strength and high-performance concretes - Polymer concrete composites- fibre reinforced concre	
mixed concrete - light weight concrete - Ferrocement- Self compacting concrete. Engineered cer	mentitious
composites.	
UNIT-III	12HOURS
Use of waste products and industrial by-products: Fly ash, micro-silica, GGBFS and other mineral	products- Geo-
textiles and geo-synthetics – applications in Civil Engineering – Concrete under special environme	•
	•
textiles and geo-synthetics – applications in Civil Engineering – Concrete under special environme	•
textiles and geo-synthetics – applications in Civil Engineering – Concrete under special environme concrete – concrete for nuclear reactors.	nt – high density
textiles and geo-synthetics – applications in Civil Engineering – Concrete under special environme concrete – concrete for nuclear reactors. UNIT-IV	nt – high density 12HOURS materials- Water
textiles and geo-synthetics – applications in Civil Engineering – Concrete under special environme concrete – concrete for nuclear reactors. UNIT-IV Concept of painting, varnishing, white washing. Thermal insulation and acoustic absorption	nt – high density 12HOURS materials- Water
textiles and geo-synthetics – applications in Civil Engineering – Concrete under special environme concrete – concrete for nuclear reactors. UNIT-IV Concept of painting, varnishing, white washing. Thermal insulation and acoustic absorption proofing materials and compounds- Flooring materials, Repair materials- Hybrid systems in	nt – high density 12HOURS materials- Water
textiles and geo-synthetics – applications in Civil Engineering – Concrete under special environme concrete – concrete for nuclear reactors. UNIT-IV Concept of painting, varnishing, white washing. Thermal insulation and acoustic absorption proofing materials and compounds- Flooring materials, Repair materials- Hybrid systems in concrete.	nt – high density 12HOURS materials- Water concrete- smart
textiles and geo-synthetics – applications in Civil Engineering – Concrete under special environme concrete – concrete for nuclear reactors. UNIT-IV Concept of painting, varnishing, white washing. Thermal insulation and acoustic absorption proofing materials and compounds- Flooring materials, Repair materials- Hybrid systems in concrete. REFERENCE BOOKS	nt – high density 12HOURS materials- Water concrete- smart 00.

- 3. Santhakumar, A.R, Concrete Technology, Oxford University Press, New Delhi, 2007.
- 4. Jackson, N., Civil Engineering Materials, ELBS, 1983.
- 5. Diamant, R.M.E., Thermal and Acoustic Insulation, Butterworths, 1986.
- 6. Vedhikizen Van Zanten, R., (Ed), Gerotextiles and Geomembranes in Civil Engineering.
- 7. Koerner, R.M., Construction and Geotechnical Methods in Foundation Engineering, McGraw Hill Co., 1985.

				5				P			- 4100					
Course	POS/C	PO1	РО	РО	РО	РО	РО	PO	РО	РО	РО	РО	PSO	PSO	PSO	PSO
Code	Os	104	2	3	4	5	6	7	8	9	10	11	1	2	3	4
	CO1		3	3	2				3		3	2	3	2	3	2
	CO2		3	3	2				3		3	2	3	2	3	2
M20TES23	CO3		3	3			3		2				3	2		2
3	CO4	3	3	3	2						3		3	2		1
	CO5	3	3	3									3			2
	CO6	3	3	3									3			2

M20TES241	APF	PLICATIONS OF IOT IN CIVIL	L	Т	Р	С				
Duration: 16weeks		ENGINEERING	2	1	-	3				
Internal Assessment: 50 N	Internal Assessment: 50 Marks Semester End Examination: 50 Marks (Minimum 20 Marks)									
Prerequisite: Strength of	materials, S	tructural analysis, Concrete Techno	logy							
COURSE OBJECTIVES: Stu	dent will be	able to learn about								
• Basics of Internet of	Things (IoT)	and sensors.								
• Applications of IoT ar	nd sensors a	nd Basics of networking								
Machine to machine communications & programming using IoT										
 Broad applications of IoT in civil engineering & construction industry 										

Enhancement of various aspects of construction projects using IoT
Adoption of IoT in structural health monitoring
COURSE OUTCOME: After successful completion of this course the student will be able to:
 Understand the basics of IoT, types of sensors & devices used.
 Understand the applications of IoT and sensors with basics of networking
Understand machine to machine communications & programming using IoT
Interpret the adoption of IoT in various civil engineering activities.
Understand use of IoT in enhancing various aspects of construction projects.
Understand the use of IoT in structural health monitoring UNIT-I 12 HOURS
Internet of Things, promises, definition, scope, sensors for IoT applications, structure of IoT, IoT Map
device Industry Sensors: Definitions and Characteristics of first generation sensors, advanced generation
sensors, Integrated IoT sensors, Polytronics systems, Sensor Swarm, Printed Electronics and IoT
generation Road Map
UNIT-II 12 HOURS
Basics of Networking, Communication Protocols, Sensor Networks, Machine to Machine
Communications, Interoperability in IoT, Introduction to Arduino Programming, Integration of Sensors
and Actuators with Arduino
UNIT-III 12 HOURS
Internet of Things devices and sensors for collecting job site data, construction crew management,
construction equipment management, IoT adoption to enhance productivity, maintenance, safety and
security in construction industry.
UNIT-IV 12 HOURS
Structural health monitoring using Internet of Things and Microelectromechanical systems (MEMS) –
introduction to MEMS, wireless sensor networks, smart sensors, Piezo sensors, Piezo generators & IoT,
case studies of IoT & MEMS application in civil infrastructure projects.
REFERENCE BOOKS
 Ashwin Pajankar, Internet of Things with Arduino and Bolt, BPB Publications (2018) Krishnan Saravanan, Implementation and Deployment of IoT Projects in Smart Cities, IGI Global
Publications (2020)
3. Qusay F Hassan, Internet of Things A to Z: Technologies and Applications, Wiley-IEEE Press
(2018)
4. ICCCBE 2020, Proceedings of the 18 th International Conference on Computing in Civil and
Building Engineering, Springer (2020)
Mapping of Course Outcomes with programme Outcomes.
Course POS/CO PO PO1 PO1
Code s 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4
CO1 3 1 2 2 2 2 1 1 3 1 3 2 M20TES241 CO2 3 2 2 2 2 1 1 3 1 3 2
M20TES241 CO2 3 2 2 2 2 1 1 3 1 3 2 CO3 3 2 2 2 2 1 1 3 1 3 2
CO3 3 2 2 2 2 1 3 1 3 2 CO4 3 2 2 2 2 2 1 1 3 1 3 2
Where, 1 (Low), 2 (Medium) and 3 (High) represents strength of correlation between CO and PO.

M20TES242	DISASTER REDUCTION AND	L	Т	Р	•	С
Duration:	MANAGEMENT					
16weeks		2	1	-	•	3
Prerequisite: Design	of Earthquake resistant structures					
	S: Student will be able to learn					
• Concept of r	natural and manmade disasters and risks ir	nvolved				
•	ts of Disaster Risk Reduction Strategies					
•	sasters and preparedness					
Disaster life	cycle, planning and preparations					
	nagement scenario in Indian context					
	National Flood Risk Mitigation Project (NF	RMP)				
·	0 1 1					
COURSE OUTCOME:	After successful completion of this course	e the student	will be abl	e to:		
	nderstanding of natural and manmade disa				lementa	tion
-	he Concepts of Disaster Risk Reduction St					
•	r preparedness to manage disasters					
-	pare for Disaster life cycle					
•	nt of disasters with available resources in I	ndian scenario	h			
-	he Concepts of National Flood Risk Mitiga					
			,			
Concepts of Hazard, Made Disaster (Arm	UNIT-I Vulnerability, Risks, Natural Disasters (ea ned conflicts and civil strip, Technologica	rthquake, Cyc al disasters, I	lone, Floo Iuman Se	ds, Volcar ttlement,	, Slow [nd Man Disaster
Concepts of Hazard , Made Disaster (Arm (famine, draught, ep between Disasters a operations during d	UNIT-I Vulnerability, Risks, Natural Disasters (ea	rthquake, Cyc al disasters, I Crash, tidal v ferent stake	lone, Floo Human Se vaves, Tsu holders in	ds, Volcar ttlement, nami) Ris Disaster and after	noes), a , Slow [sks, Rela Relief.	nd Man Disaster Itionshi Refuge rs,Inter
Concepts of Hazard , Made Disaster (Arm (famine, draught, ep between Disasters a operations during d sectoral coordination	UNIT-I Vulnerability, Risks, Natural Disasters (eaned conflicts and civil strip, Technologica bidemics) and Rapid Onset Disasters (Air and Development and vulnerabilities, dif isasters, Human Resettlement and Rehab n during disasters, Models in Disasters.	rthquake, Cyc al disasters, I Crash, tidal v ferent stake pilitation issue	lone, Floo Human Se vaves, Tsu holders in es during	ds, Volcar ttlement, nami) Ris Disaster and after	noes), a , Slow E sks, Rela Relief. disaste 12HOU	nd Mar Disaster Itionshi Refuge rs,Inter RS
Concepts of Hazard, Made Disaster (Arm (famine, draught, ep between Disasters a operations during d sectoral coordination Disaster Risk Reduc Procedures, Early w	UNIT-I Vulnerability, Risks, Natural Disasters (eaned conflicts and civil strip, Technologica bidemics) and Rapid Onset Disasters (Air and Development and vulnerabilities, dif isasters, Human Resettlement and Rehat n during disasters, Models in Disasters. UNIT-II tion Strategies, Disaster Cycle, Phases of arning Systems Models in disaster prepa	rthquake, Cyc al disasters, I Crash, tidal v ferent stake bilitation issue f Disaster, Pre redness, Com	lone, Floo Human Se vaves, Tsu holders in es during parednes	ds, Volcar ttlement, nami) Ris Disaster and after s Plans, A of Disaste	noes), a , Slow E sks, Rela Relief. disaste 12HOU Action P er Relief	nd Mar Disaster Itionshi Refuge rs,Inter RS lans an -(Wate
Concepts of Hazard, Made Disaster (Arm (famine, draught, ep between Disasters a operations during d sectoral coordination Disaster Risk Reduc Procedures, Early w food, sanitation, sho	UNIT-I Vulnerability, Risks, Natural Disasters (eaned conflicts and civil strip, Technologica oidemics) and Rapid Onset Disasters (Air and Development and vulnerabilities, dif isasters, Human Resettlement and Rehat n during disasters, Models in Disasters. UNIT-II stion Strategies, Disaster Cycle, Phases of	rthquake, Cyc al disasters, I Crash, tidal v ferent stake bilitation issue f Disaster, Pre redness, Com	lone, Floo Human Se vaves, Tsu holders in es during parednes	ds, Volcar ttlement, nami) Ris Disaster and after s Plans, A of Disaste	noes), a , Slow E sks, Rela Relief. disaste 12HOU Action P er Relief	nd Man Disaster Itionshi Refuge rs,Inter RS lans and
Concepts of Hazard, Made Disaster (Arm (famine, draught, ep between Disasters a operations during d sectoral coordination Disaster Risk Reduc Procedures, Early w food, sanitation, sho measures in DRR	UNIT-I Vulnerability, Risks, Natural Disasters (eaned conflicts and civil strip, Technologica bidemics) and Rapid Onset Disasters (Air and Development and vulnerabilities, dif isasters, Human Resettlement and Rehaten n during disasters, Models in Disasters. UNIT-II tion Strategies, Disaster Cycle, Phases of arning Systems Models in disaster prepa- elter, Health and Waste Management), O	rthquake, Cyc al disasters, I Crash, tidal v ferent stake pilitation issue f Disaster, Pre redness, Com Community b	lone, Floo Human Se vaves, Tsu holders in es during eparednes iponents o ased DRR,	ds, Volcar ttlement, nami) Ris Disaster and after s Plans, A of Disaste Structura	noes), a , Slow E sks, Rela Relief. disaste 12HOU Action Pl er Relief al nonst	nd Mar Disaster Itionshi Refuge rs,Inter RS lans an -(Water tructura
Concepts of Hazard, Made Disaster (Arm (famine, draught, ep between Disasters a operations during d sectoral coordination Disaster Risk Reduc Procedures, Early w food, sanitation, sho measures in DRR DRR Master Plannin	UNIT-I Vulnerability, Risks, Natural Disasters (eaned conflicts and civil strip, Technologica bidemics) and Rapid Onset Disasters (Air and Development and vulnerabilities, dif isasters, Human Resettlement and Rehat n during disasters, Models in Disasters. UNIT-II tion Strategies, Disaster Cycle, Phases of arning Systems Models in disaster prepa elter, Health and Waste Management), C g for the Future, Capacity Building, Spher	rthquake, Cyc al disasters, I Crash, tidal v ferent stake bilitation issue f Disaster, Pre redness, Com Community b re Standards.	lone, Floo Human Se vaves, Tsu holders in es during parednes ponents o ased DRR, Rehabilita	ds, Volcar ttlement, nami) Ris Disaster and after s Plans, A of Disaste Structura	noes), a , Slow E sks, Rela Relief. disaste 12HOU Action Pl er Relief al nonst	nd Man Disaster Itionshi Refuge rs,Inter RS lans and -(Water tructura
Concepts of Hazard, Made Disaster (Arm (famine, draught, ep between Disasters a operations during d sectoral coordination Disaster Risk Reduc Procedures, Early w food, sanitation, sho measures in DRR DRR Master Plannin	UNIT-I Vulnerability, Risks, Natural Disasters (eaned conflicts and civil strip, Technologica bidemics) and Rapid Onset Disasters (Air and Development and vulnerabilities, dif isasters, Human Resettlement and Rehaten n during disasters, Models in Disasters. UNIT-II tion Strategies, Disaster Cycle, Phases of arning Systems Models in disaster prepa- elter, Health and Waste Management), O	rthquake, Cyc al disasters, I Crash, tidal v ferent stake bilitation issue f Disaster, Pre redness, Com Community b re Standards.	lone, Floo Human Se vaves, Tsu holders in es during parednes ponents o ased DRR, Rehabilita	ds, Volcar ttlement, nami) Ris Disaster and after s Plans, A of Disaste Structura ation mea	noes), a , Slow E sks, Rela Relief. disaste 12HOU Action Pl er Relief al nonst	nd Mar Disaster Itionshi Refuge rs,Inter RS lans an -(Water tructura nd long
Concepts of Hazard, Made Disaster (Arm (famine, draught, ep between Disasters a operations during d sectoral coordination Disaster Risk Reduc Procedures, Early w food, sanitation, sho measures in DRR DRR Master Plannin term reconstruction	UNIT-I Vulnerability, Risks, Natural Disasters (eaned conflicts and civil strip, Technologica bidemics) and Rapid Onset Disasters (Air and Development and vulnerabilities, dif isasters, Human Resettlement and Rehaten during disasters, Models in Disasters. UNIT-II stion Strategies, Disaster Cycle, Phases of arning Systems Models in disaster prepa elter, Health and Waste Management), C g for the Future, Capacity Building, Spher .Psychosocial care provision during the dif	rthquake, Cyc al disasters, I Crash, tidal v ferent stake bilitation issue f Disaster, Pre redness, Com Community b re Standards. ferent phases	lone, Floo Juman Se vaves, Tsu holders in es during parednes ponents o ased DRR, Rehabilita of disaste	ds, Volcar ttlement, nami) Ris Disaster and after s Plans, A of Disaste Structura ation mea	noes), a , Slow E sks, Rela Relief. disaste 12HOU Action Pler Relief al nonst asures a 12HOU	nd Man Disaster Itionshi Refuge rs,Inter RS lans and lans and tructura nd long RS
Concepts of Hazard, Made Disaster (Arm (famine, draught, ep between Disasters a operations during d sectoral coordination Disaster Risk Reduc Procedures, Early w food, sanitation, sho measures in DRR DRR Master Plannin term reconstruction Medical Manageme cycle, Disaster plann	UNIT-I Vulnerability, Risks, Natural Disasters (eaned conflicts and civil strip, Technologica bidemics) and Rapid Onset Disasters (Air and Development and vulnerabilities, dif isasters, Human Resettlement and Rehaten during disasters, Models in Disasters. UNIT-II tion Strategies, Disaster Cycle, Phases of arning Systems Models in disaster prepa elter, Health and Waste Management), C g for the Future, Capacity Building, Spher Psychosocial care provision during the dif UNIT-III ont Introduction to disaster medicine, Vari ing, Disaster preparation, Disaster recover	rthquake, Cyc al disasters, I Crash, tidal v ferent stake pilitation issue f Disaster, Pre redness, Com Community b re Standards. ferent phases ous definition ry in relation	lone, Floo Juman Se vaves, Tsu holders in es during eparednes ponents of ased DRR, Rehabilita of disaste	ds, Volcar ttlement, nami) Ris Disaster and after s Plans, A of Disaste Structura ation mea er	noes), a , Slow E sks, Rela Relief. disaste 12HOU Action Pl er Relief al nonst asures a 12HOU ine, Disa	nd Man Disaster Itionshi Refuge rs,Inter RS lans and -(Water tructura nd long RS
Concepts of Hazard, Made Disaster (Arm (famine, draught, ep between Disasters a operations during d sectoral coordination Disaster Risk Reduc Procedures, Early w food, sanitation, sho measures in DRR DRR Master Plannin term reconstruction Medical Manageme cycle, Disaster plann to disaster medical r	UNIT-I Vulnerability, Risks, Natural Disasters (eaned conflicts and civil strip, Technologica oidemics) and Rapid Onset Disasters (Air and Development and vulnerabilities, dif isasters, Human Resettlement and Rehaten n during disasters, Models in Disasters. UNIT-II tion Strategies, Disaster Cycle, Phases of arning Systems Models in disaster prepa- elter, Health and Waste Management), C g for the Future, Capacity Building, Sphere Psychosocial care provision during the dif UNIT-III ent Introduction to disaster medicine, Vari- ing, Disaster preparation, Disaster recover management, Medical surge, Surge capaci	rthquake, Cyc al disasters, I Crash, tidal v ferent stake pilitation issue f Disaster, Pre redness, Com Community b re Standards. ferent phases ous definition ry in relation ty, Medical tr	lone, Floo Juman Se vaves, Tsu holders in es during parednes ponents o ased DRR, Rehabilita of disaste is in disast	ds, Volcar ttlement, nami) Ris Disaster and after s Plans, A of Disaste Structura ation mea er	noes), a , Slow E sks, Rela Relief. disaste 12HOU Action Pler Relief al nonst asures a 12HOU ine, Disa	nd Mar Disaster Itionshi Refuge rs,Inter RS lans an -(Water tructura nd long RS aster life
Concepts of Hazard, Made Disaster (Arm (famine, draught, ep between Disasters a operations during d sectoral coordination Disaster Risk Reduc Procedures, Early w food, sanitation, sho measures in DRR DRR Master Plannin term reconstruction Medical Manageme cycle, Disaster plann to disaster medical r of hazardous materi	UNIT-I Vulnerability, Risks, Natural Disasters (eaned conflicts and civil strip, Technologica bidemics) and Rapid Onset Disasters (Air and Development and vulnerabilities, diffisasters, Human Resettlement and Rehaten during disasters, Models in Disasters. UNIT-II stion Strategies, Disaster Cycle, Phases of arning Systems Models in disaster prepa elter, Health and Waste Management), C g for the Future, Capacity Building, Spher Psychosocial care provision during the difficult UNIT-III Int Introduction to disaster medicine, Vari ing, Disaster preparation, Disaster recover management, Medical surge, Surge capaci al - Types of injuries caused, Self protection	rthquake, Cyc al disasters, I Crash, tidal v ferent stake pilitation issue f Disaster, Pre redness, Com Community b re Standards. ferent phases ous definition ry in relation ty, Medical tr	lone, Floo Juman Se vaves, Tsu holders in es during parednes ponents o ased DRR, Rehabilita of disaste is in disast	ds, Volcar ttlement, nami) Ris Disaster and after s Plans, A of Disaste Structura ation mea er	noes), a , Slow E sks, Rela Relief. disaste 12HOU Action Pler Relief al nonst asures a 12HOU ine, Disa	nd Mar Disaster Itionshi Refuge rs,Inter RS lans an -(Water tructura nd long RS aster life
Concepts of Hazard, Made Disaster (Arm (famine, draught, ep between Disasters a operations during d sectoral coordination Disaster Risk Reduce Procedures, Early w food, sanitation, sho measures in DRR DRR Master Plannin term reconstruction Medical Manageme cycle, Disaster plann to disaster medical r of hazardous materi – Pre hospital medic	UNIT-I Vulnerability, Risks, Natural Disasters (ea ned conflicts and civil strip, Technologica bidemics) and Rapid Onset Disasters (Air and Development and vulnerabilities, dif isasters, Human Resettlement and Rehat n during disasters, Models in Disasters. UNIT-II etion Strategies, Disaster Cycle, Phases of arning Systems Models in disaster prepa elter, Health and Waste Management), C g for the Future, Capacity Building, Spher .Psychosocial care provision during the dif UNIT-III ent Introduction to disaster medicine, Vari ing, Disaster preparation, Disaster recover management, Medical surge, Surge capaci al - Types of injuries caused, Self protection al management of victims –	rthquake, Cyc al disasters, I Crash, tidal v ferent stake bilitation issue f Disaster, Pre redness, Com Community b re Standards. ferent phases ous definition ry in relation ty, Medical tr on contamina	lone, Floo Juman Se vaves, Tsu holders in es during eparednes ponents o ased DRR, Rehabilita of disaste is in disast iage, Natio ted area a	ds, Volcar ttlement, nami) Ris Disaster and after s Plans, A of Disaste Structura ation mea er cer medici onal Asses	noes), a , Slow E sks, Rela Relief. disaste 12HOU Action Pler Relief al nonst asures a 12HOU ine, Disa ssing the ntaminal	nd Mar Disaster Refuge rs,Inter RS lans an -(Water tructura nd long RS aster life e nature
Concepts of Hazard, Made Disaster (Arm (famine, draught, ep between Disasters a operations during d sectoral coordination Disaster Risk Reduc Procedures, Early w food, sanitation, sho measures in DRR DRR Master Plannin term reconstruction Medical Manageme cycle, Disaster plann to disaster medical r of hazardous materi – Pre hospital medic Polytrauma Care - Sp	UNIT-I Vulnerability, Risks, Natural Disasters (ea ned conflicts and civil strip, Technologica bidemics) and Rapid Onset Disasters (Air and Development and vulnerabilities, dif isasters, Human Resettlement and Rehat n during disasters, Models in Disasters. UNIT-II stion Strategies, Disaster Cycle, Phases of arning Systems Models in disaster prepa elter, Health and Waste Management), C g for the Future, Capacity Building, Sphere Psychosocial care provision during the dif UNIT-III Int Introduction to disaster medicine, Vari ing, Disaster preparation, Disaster recover management, Medical surge, Surge capaci al - Types of injuries caused, Self protection al management of victims — pecific treatment in emergency and Interest	rthquake, Cyc al disasters, I Crash, tidal v ferent stake bilitation issue f Disaster, Pre redness, Com Community b re Standards. ferent phases ous definition ry in relation ty, Medical tr on contamina	lone, Floo Juman Se vaves, Tsu holders in es during eparednes ponents o ased DRR, Rehabilita of disaste is in disast iage, Natio ted area a	ds, Volcar ttlement, nami) Ris Disaster and after s Plans, A of Disaste Structura ation mea er cer medici onal Asses	noes), a , Slow E sks, Rela Relief. disaste 12HOU Action Pler Relief al nonst asures a 12HOU ine, Disa ssing the ntaminal	nd Mar Disaster Refuge rs,Inter RS lans an -(Water tructura nd long RS aster life e nature
Concepts of Hazard, Made Disaster (Arm (famine, draught, ep between Disasters a operations during d sectoral coordination Disaster Risk Reduc Procedures, Early w food, sanitation, sho measures in DRR DRR Master Plannin term reconstruction Medical Manageme cycle, Disaster plann to disaster medical r of hazardous materi – Pre hospital medic Polytrauma Care - Sp	UNIT-I Vulnerability, Risks, Natural Disasters (ea ned conflicts and civil strip, Technologica bidemics) and Rapid Onset Disasters (Air and Development and vulnerabilities, dif isasters, Human Resettlement and Rehat n during disasters, Models in Disasters. UNIT-II etion Strategies, Disaster Cycle, Phases of arning Systems Models in disaster prepa elter, Health and Waste Management), C g for the Future, Capacity Building, Spher .Psychosocial care provision during the dif UNIT-III ent Introduction to disaster medicine, Vari ing, Disaster preparation, Disaster recover management, Medical surge, Surge capaci al - Types of injuries caused, Self protection al management of victims –	rthquake, Cyc al disasters, I Crash, tidal v ferent stake bilitation issue f Disaster, Pre redness, Com Community b re Standards. ferent phases ous definition ry in relation ty, Medical tr on contamina	lone, Floo Juman Se vaves, Tsu holders in es during eparednes ponents o ased DRR, Rehabilita of disaste is in disast iage, Natio ted area a	ds, Volcar ttlement, nami) Ris Disaster and after s Plans, A of Disaste Structura ation mea er cer medici onal Asses and decon	noes), a , Slow E sks, Rela Relief. disaste 12HOU Action Pler Relief al nonst asures a 12HOU ine, Disa ssing the ntaminal	nd Mar Disaster Itionshi Refuge rs,Inter RS lans an -(Wate tructura nd long RS aster life ted area in Loca
Concepts of Hazard, Made Disaster (Arm (famine, draught, ep between Disasters a operations during d sectoral coordination Disaster Risk Reduc Procedures, Early w food, sanitation, sho measures in DRR DRR Master Plannin term reconstruction Medical Manageme cycle, Disaster plann to disaster medical r of hazardous materi – Pre hospital medic Polytrauma Care - S EMS System includir	UNIT-I Vulnerability, Risks, Natural Disasters (ea ned conflicts and civil strip, Technologica bidemics) and Rapid Onset Disasters (Air and Development and vulnerabilities, dif isasters, Human Resettlement and Rehat n during disasters, Models in Disasters. UNIT-II stion Strategies, Disaster Cycle, Phases of arning Systems Models in disaster prepa elter, Health and Waste Management), C g for the Future, Capacity Building, Spher Psychosocial care provision during the dif UNIT-III ent Introduction to disaster medicine, Vari ing, Disaster preparation, Disaster recover management, Medical surge, Surge capaci al - Types of injuries caused, Self protection al management of victims — pecific treatment in emergency and Intensing age equipment, safe use of equipment	rthquake, Cyc al disasters, I Crash, tidal v ferent stake pilitation issue f Disaster, Pre redness, Com Community b re Standards. ferent phases ous definition ry in relation ty, Medical tr on contamina sive Care Unit	lone, Floo Juman Se vaves, Tsu holders in es during parednes ponents o ased DRR, Rehabilita of disaste is in disast iage, Natio ted area a s – allocat	ds, Volcar ttlement, nami) Ris Disaster and after s Plans, A of Disaste Structura ation mea er cer medici onal Asses ind decon	noes), a , Slow E sks, Rela Relief. disaste 12HOU Action Pler Relief al nonst asures a 12HOU ine, Disa ssing the ntaminat ecialists 12HOU	nd Mar Disaster Refuge rs,Inter RS lans an -(Wate tructura nd long RS aster life ted area in Loca RS

Authority, District Disaster Management Authority Cases Studies : Bhopal Gas Disaster ,Gujarat Earth Quake, Orissa Super-cyclone, south India Tsunami, Bihar floods, Plague-Surat, Landslide in North East, Heat waves of AP& Orissa, 278 Cold waves in UP. Bengal famine, best practices in disaster management, National Flood Risk Mitigation Project (NFRMP), Mines Safety in India, Indian Meteorological Department, National Crisis

Management Committee, Indian NATIONAL Centre for Oceanic Information System (INCOIS) **REFERENCE BOOKS**

1. Disaster Management Guidelines. GOI-UNDP Disaster Risk Reduction Programme (2009-2012.)

2. Disaster Medical Systems Guidelines. Emergency Medical Services Authority, State of California, EMSA no.214, June 2003

3. Guerisse P. 2005 Basic Principles of Disaster Medical Management. Act Anaesth.Belg;56:395-401

4. Aim and Scope of Disaster Management. Study Guide prepared by Sharman and Hansen. UW-DMC, University of Washington.

5. Sphere Project (2011). Humanitarian Charter and Minimum Standards in Disaster Response.

						-			_							
Course	POS/	РО	Ρ	Р	Р	Р	Р	Р	P	РО	PO1	PO1	PSO	PSO	PSO	PSO
Code	COs	1	0	0	0	0	0	0	0	9	0	1	1	2	3	4
	003	-	2	3	4	5	6	7	8	5	•	-	_	_		-
	CO1	3	3						2		3		3			3
	CO2	3	3						2		3		3			3
M20TE	CO3	3	3	3					2		3		3		1	
S242	CO4	3	3						2		3		3		2	
	CO5	3	3						2		3		3		2	
	CO6	3	3	3					2		3		3			3

Mapping of Course Outcomes with programme Outcomes

M20TES243		L	Т	Р	C
Duration:	SHORING, SCAFFOLDING AND				
16weeks	FORMWORK	2	1	-	3
Prerequisite: Concre					
	: Student will be able to learn				
	the planning of formwork installations				
 Understand 	the scheduling of formwork for various elements				
Materials to	be used in the form				
 Design the formation 	orms and shoring				
Check the ind	adequacies in shoring and formwork				
 Location of joint 	ob mill and storage				
COURSE OUTCOME:	After successful completion of this course the st	udent wi	II be able to:		
 Implement tl 	he planning of formwork installations				
 Implement tl 	he scheduling of formwork for various elements				
Decide the m	naterials to be used in the form				
• Design the fo	orms and shoring				
Check the ind	adequacies in shoring and formwork				
• Storage, inst	allation and location of job mill and storage				
	UNIT-I			12HOUF	00

At Tender stage – Development of basic system – Planning for maximum reuse – Economical form construction – Planning examples – Crane size, effective scheduling estimate – Recheck plan details – Detailing the forms. Overall Planning – detail planning – Standard units – Corner units – Schedule for column formwork

work.																
				l	JNIT-I	I							12	2HOUR	S	
FORM MATE	RIALS															
Lumber – Ty and grades - - Hardware Placing – Co pressure dis	- Textured and faster nsistency (surface ners – Na of concr	s and s ails in P ete – Li	trengt lywoo ve loa	h – Re d Con ds anc	consti crete I wind	ituted densit press	wood ty – He sure –	d – Ste eight · Vibra	eel – A of dis	Alumin Charge	ium Fo — Tem	rm lini peratu	ng mat Ire – Ra	erials	
DESIGN OF F	ORMS AN	D SHOR	ES	L	JNIT-II								12	2HOUR	5	
Basic simplif Bearing – Ex Examples in shores – Site shoring for r shores – Day	amples in each. Sim e Preparat nulti storie	wall for ple woo ion, Size es – Mor	ms – Sla d stress and sp re conce	ab fori ses – S acing entrat	ms – B lende – Stee ed shc	eam f rness I Tow ore loa	orms ratio - er Fra ids T-	– Ties - Allov mes – heads	s, Ancl wable - Safet s – Tov	hors a load ty pra w Tier	nd Hai – Tubu ctices - wood	ngers - Ilar ste - Horiz shores	- Colun el shor ontal s s – Ellis	nn forn es pate hores	ented	
shore – Raki				10015 :	siluies	- Sai	eway	Symo	115 5110	Jies –	Deave	- au	ance s	nores	Deau	-
		-		ι	JNIT-IV	V							12	2HOUR	S	
FORMWORK	FOR BUIL	DINGS														
Location of j – Curb and g heads – Bea forms. Caus Premature s – Case stud Stripping sec REFERENCE 1. Robert L H 1996 2. Michael P	gutter forn m or girde ses of fail tripping – ies – Finis quence – A BOOKS Hurd, M.K.	ns – Wa r forms ures – Errors ir h of ex Advantag	II forms – Beam Inadeque o design posed o ges of r	– Pref n pocku uate s n – Fail concre eshori Concr	fabrica ets – S shoring ure to ete des ng rete, Sp	ited p susper g inac follov sign d	anel s nded f <u>dequa</u> w codo eficie Publio	ystem orms te bra es – H ncies cation	ns – G – Con acing ow fo – Saf	iant fo ocrete of m rmwc ety fa	orms c joint c ember ork affe	urved constru rs – in ects con – Prev	wall for ction – nprope ncretes ention	rms – (- Flying er vibra s qualit of rot	Columr system ation - y – AC ation -	ו - - -
2. Michael P																
3. Austin, C.	K., Formw	ork for C	Concret	e, Clea	aver –	Hume	Press	s Ltd.,	Londo	on, 19	96.					
4 Day	and Garold	D. Obei	rlender	, Form	work	For Co	oncret	e Stru	ucture	s, Mc	Graw -	- Hill , 1	1996.			
4. Peuritoy a																
4. Peuritoy a					-			ith nr	ogran		\ + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
			apping					-	-	1			DCC	D (C)	D (C)	
Course	POS/C Os	M PO1	apping PO2	РО	РО	РО	РО	PO	PO	РО	РО	РО	PSO 1	PSO 2	PSO 3	PS
	Os	PO1	PO2					-	-	1	PO 10		1	2	3	4
Course	Os CO1	PO1 3	PO2 3	РО	РО	РО	РО	PO	PO	РО	PO 10 2	РО		2 2		
Course Code	Os	PO1	PO2	РО	РО	РО	РО	PO	PO	РО	PO 10	РО	1	2	3	-
Course	Os CO1 CO2	PO1 3 3	PO2 3	PO 3	РО	РО	РО	PO	PO	РО	PO 10 2	РО	1 3 3	2 2 2	3 1 1	-

 CO6
 3
 3
 3
 3

 Where, 1 (Low), 2 (Medium) and 3 (High) represents strength of correlation between CO and PO.

M20TE0203		L	Т	Р	С
Duration: 16weeks	CONSTRUCTION SOFTWARE LAB	0	0	2	2
Prerequisite: AUTOC	AD, STAAD PRO and ETABS			1	
COURSE OBJECTIVES:	Student will be able to learn				
 Importing and 	exporting data				
 Project manag 	ement modules				
 Prepare the re 	source sheet, assign and level the resource				
• Linking the pro	ject management and Contract manager module	es			
 Transferring th 	e data to Primavera Contractor users				
• Plot the varian	ce graphs for the given Project				
COURSE OUTCOME: A	fter successful completion of this course the stu	dent w	vill be ab	le to:	
• To plan the bu	ilding and scheduling for multi-storeyed building				
Prepare the re	source sheet, assign and level the resource				
 To plan and sc 	hedule the road projects				
• To prepare res	ource sheet and assign the level of resources				
• Transfer the da	ata to Primavera Contractor users				
Plot the varian	ce graphs for the assigned Projects				
MS PROJECT SOFTWA	RE:				
1. Basics and applica	tion of MS Project Software				
2. Planning and Sche	duling of Multi storied building				
3. Planning and sche	duling of Road Project				
PRIMAVERA SOFTWA					
	n of Primavera software referring the Primavera	Manu	al		
And solving the probl	C C				
-	duling of Multi storied building				
e	duling of Road Project				
•	rce sheet, assign and level the resource				
	t reports available in Primavera				
 Plot the variance g REFERENCE: 	raphs for the given Project				
	ct Management Reference Manual				
riillavela" Pom Ploje					

			Мар	ping o	of Cou	rse O	utcom	ies wi	th pro	gram	me Ou	tcomes	5			
Course	POS/C	РО	PO	РО	РО	РО	РО	РО	PO	РО	PO1	PO1	PSO	PSO	PSO	PSO
Code	Os	1	2	3	4	5	6	7	8	9	0	1	1	2	3	4
	CO1	3	3	2	3		2	2	1	1			3	3	2	1
	CO2	3	3	2	3		2	2	1	1			3	3	2	1
M20TE0	CO3	3	2	3	3	2	1		3	2		2	3	3	1	2
204	CO4	3	3	3	3	2	1			3			3	3	2	2
	CO5	3	2	3	3	3		2	3				3	3	2	3
	CO6	3	2	3	3	3		2	3				3	3	2	3

Where, 1 (Low), 2 (Medium) and 3 (High) represents strength of correlation between CO and PO.

M20TE0204 Mini Project-II	Practical/report		0	0	2	2	2
---------------------------	------------------	--	---	---	---	---	---

The student is required to carry out a mini project individually and Project Management on small buildings using M S Project and Primavera software.

SEMESTER

SI. No	Course Code	Title of the Course	Practical /Term Work /	Pre requisite	Credit Pattern & Credit Value			Contact Hours	
			Sessions		L	Т	Р	Total	
1	M20TEON01	MOOC/SWAYAM Online Course	OE	i.	3	1	0	4	
2	M20TE0301	Internship with Report	Practical/ Term Work and Viva - Voce	B. TECH in Civil Engineering	2	0	4	6	
3	M20TE0302	Project Phase-I	Practical/ Report and Viva -Voce	BE / B Er	2	0	4	6	

1. Students will have to choose an online course offered in MOOC/SWAYAM/COURSERA, this course will enhance additional knowledge studying online course of student's choice

2. Students have to undergo Internship in reputed companies for a minimum period of three months and gain the field related challenges and make himself/herself industry ready

3. During third semester students will be allotted Supervisor/Guide for carrying out dissertation for the full fourth semester term. Identification of dissertation topic, deciding the objectives and Literature review will be done with the discussion with their supervisor/guide.

IV			SEMESTER						
SI. No	Course Code	Title of the Course	Practical /Term Work / Sessions	Pre requisite	Credit Pattern & Credit Value			Contact Hours	
					L	Т	Ρ	Total	
1	M20TE0401	Dissertation Phase-II	Practical/ Thesis Submission and Viva-Voce		2	0	6	8	
2	M20TE0402	Technical Seminar With Report	Practical/ Term Work		0	0	4	4	

1. The student is required to deliver a seminar and submit a report on the latest development in the construction technology and management

2. Elaborate studies on their dissertation work with regard to experimental/analytical/software based investigations, preparing the dissertation report as per university regulations and publication of a paper in reputed journals.