

SCHOOL OF CIVIL ENGINEERING

HANDBOOK

M. Tech. in Computer Aided Structural Engineering

2018-20

Rukmini Knowledge Park, Kattigenahalli, Yelahanka, Bangalore - 560 064 Phone No: +91-080-46966966

Rukmini Educational Charitable Trust

www.reva.edu.in

Chancellor's Message

Education during recent years has witnessed a great transformation. Today's society, termed as "Knowledge Society" has brought about unprecedented economic and social growth. This has propelled universities across the world to devise new ways of tapping human potential for different competencies and building a vibrant society with a win-win situation for all.

REVA University has seen the light of the day to imbibe this character of paradigm shift in academic pursuits to contribute to the knowledge society. REVA works hard to bring in you an exciting and rewarding educational experience, to discover new interests and to develop your

career prospects. You will benefit from a unique approach to student-centered learning through group work and individual study tackling real world challenges alongside experienced practitioners and researchers.

REVA has excellent learning facilities including custom built teaching facilities designed specifically to emulate working conditions, air-conditioned library opened for your studies from early morning till midnight and facilities for variety of sports and cultural activities.

Our faculties have introduced socially relevant and market driven engineering courses after studying the requirements of industries in detail and consulting entrepreneurs, experts in different areas of commerce and industry and other stake-holders. I am glad that the Choice Based Credit System (CBCS) and Continuous Assessment Grading Pattern (CAGP) being adopted will facilitate learning environment under continuous guidance and monitoring by the faculty and equip you with competent skills to opt for different job prospects across the global.

I hope that the present scheme of instructions, continuous periodic progress assessments, course curriculum of M. Tech in **Computer Aided Structural Engineering** and other information provided in this hand book will guide you to choose appropriate courses of study and move ahead in the right direction in your chosen area of study. I hope you will enjoy and experience the curriculum, the student-centered teaching and learning ambience in developing your personality to become successful professionals, entrepreneurs and proud citizens of the country.

I wish you every success in your career.

Dr. P. Shyama Raju

The Founder and Hon'ble Chancellor, REVA University

MESSAGE FROM THE VICE CHANCELLOR

Higher education across the globe is opening doors of its academic disciplines to the real world experiences. The disciplinary legitimacy is under critical review. Trans-border mobility and practice learning are being fore-grounded as guiding principles. Interactive learning, bridging disciplines and facilitating learners to gain different competencies through judicious management of time is viewed as one of the greatest and fascinating priorities and challenges today.

All the programs in REVA University are designed with a great care and after detailed market survey of present requirements and job opportunities. Experts in respective areas of study from primary institutions, industries, research organizations, business sectors and such others have been involved in designing the curriculum of each program.

The L: T: P structure of teaching and learning under Choice Based Credit System (CBCS) and Continuous Assessment Grading Pattern (CAGP) would certainly help our students learn and build competencies needed in this knowledge based society. It provides students an opportunity to choose subject(s) of interest in other areas of study and learn courses with students of different subjects. It facilitates cross cultural learning. It further facilitates students to move in fast track and earn additional certificates and diploma.

The well qualified, experienced, committed teachers in REVA University will involve students in integrative learning and application environment within and outside the university. They will certainly mould them with knowledge, skill and ethical values and empower them to face the competitive world with courage and confidence.

This handy document containing a brief information about *M* Tech in Computer Aided Structural Engineering, scheme of instruction, course content, CBCS-CAGP regulations and its advantages and calendar of events for the year will serve as a guiding path to students to move forward in a right direction. It is for the students to be disciplined, committed and to work hard and make use of enormous resources and expert faculties to accomplish all round development of their personalities and succeed with flying colors not only in earning degree but also in their future career as leaders and proud citizens of mother India.

Dr. S.Y.Kulkarni Vice-Chancellor, REVA University

MESSAGE FROM THE DIRECTOR

The M. Tech in Computer Aided and Structural Engineering is an innovative program based on recent advances in the Computer Aided analysis and design of structures mainly encountered in Civil Engineering practice. It provides an excellent grounding in the fundamentals of structural engineering subjects. It also provides a comprehensive coverage of the recent developments in structural engineering and of the use of computers in the analysis and design of structures.

The program comprises of courses providing knowledge in core areas of structural engineering, such as Computational Structural mechanics, Computer Aided design of RC structures, Computer Aided Design of concrete bridges, Computational Structural dynamics etc. These are known as Hard Core courses. There are number of courses providing knowledge in specialized areas of Computer Aided design of industrial structures, Advanced solid mechanics, Reliability Analysis of structures, Design of masonry structures, Special concrete and so on facilitating students to choose specialized areas of their interest. These are termed as Soft Core courses. Apart from a minor project in the third semester, the fourth semester is completely devoted to Dissertation work to enable students to work in concerned industries / institutions and get exposed to practical situations. The lab programs being part of the curriculum in each semester of the program will certainly provide students the experience and confidence to work in challenging environment in their future career.

The benefits of choosing M. Tech in Computer Aided and Structural Engineering are:

- Flexibility to choose various fields specializations for their study.
- Opportunity to work on live problems.
- Opportunity to work on latest technologies.
- Opportunity for designers & planner to plan & design live projects.

Students completing this program will have opportunities within the country as well as abroad to work and executive structural design projects of complex structures such as shells, folded plates, ribbed slabs, tall structures etc. They also have prospects of becoming entrepreneurs in structural consultancy. The field also has ample opportunities for advanced research as the students undergo preliminary research as a part of master's degree program.

I am sure the students choosing M Tech in Computer Aided and Structural Engineering in REVA University will enjoy the curriculum, teaching and learning environment, the vast infrastructure and the experienced teachers involvement and guidance. The cirruculum caters to and has relevance to local, regional, national, global developmental needs. We will strive to provide all needed comfort and congenial environment for their studies. Maximum number of courses are integrated with cross cutting issues with relevant to professional ethics, Gender, human values, environment and Sustainability. I wish all students pleasant stay in REVA and grand success in their career. We will strive to provide all needed comfort and congenial environment for their studies. I wish all students pleasant stay in REVA and grand success in their career.

Dr. Y. Ramalinga Reddy Director School of Civil Engineering

CONTENTS

SI. No.	Particulars	Page No.
	Message from the Hon'ble Chancellor	2
01	Message from the Hon'ble Vice-Chancellor	3
02	Message from the Hon'ble Principal Director	4
03	Preface	5
04	Rukmini Educational Charitable Trust	7
05	About REVA University	8
06	About School of Civil Engineering - Vision - Mission - Academic objectives	9
07	Advisory Board	11
08	CBCS (Choice Based Credit System) and CAGP (Continuous Assessment and Grading Pattern) of education and its advantages	12
09	Summary of REVA University Regulations for Choice Based Credit System (CBCS) and Continuous Assessment Grading Pattern (CAGP) for Post Graduate Degree Program	12
10	Course Numbering System	25
11	M. Tech in Computer Aided Structural Engineering - Scheme of Instructions	26
12	Detailed Syllabus - Course Objective - Course Contents (Unit-1,2,3,4) - Course Outcomes - Reference Books	28
12	Training and Placement	64
13	Faculty Profile	66
14	Academic Calendar 2015-16 (First & Second Semester)	67
15	Do's and Don'ts	69

RUKMINI EDUCATIONAL CHARITABLE TRUST

It was the dream of late Smt. Rukmini Shyama Raju to impart education to millions of underprivileged children as she knew the importance of education in the contemporary society. The dream of Smt. Rukmini Shyama Raju came true with the establishment of Rukmini Educational Charitable Trust (RECT), in the year 2002. **Rukmini Educational Charitable Trust** (RECT) is a Public Charitable Trust, set up in 2002 with the objective of promoting, establishing and conducting academic activities in the fields of Arts, Commerce, Education, Engineering, Environmental Science, Management and Science & Technology, among others. In furtherance of these objectives, the Trust has set up the REVA Group of Educational Institutions comprising of REVA Institute of Technology & Management (RITM), REVA Institute of Science and Management (RISM), REVA Institute of Management Studies (RIMS), REVA Institute of Education (RIE), REVA First Grade College (RFGC), REVA Degree College (Evening), REVA Independent PU College at Kattigenahalli, Ganganagar and Sanjaynagar and now REVA University. Through these institutions, the Trust seeks to fulfill its vision of providing world class education and create abundant opportunities for the youth of this nation to excel in the areas of Engineering, Commerce, Management, Education, Arts and Science & Technology.

Every great human enterprise is powered by the vision of one or more extraordinary individuals and is sustained by the people who derive their motivation from the founders. The Chairman of the Trust is Dr. P. Shyama Raju, a developer and builder of repute, a captain of the industry in his own right and the Chairman and Managing Director of the DivyaSree Group of companies. The idea of creating these top notch educational institutions was born of the philanthropic instincts of Dr. P. Shyama Raju to do public good, quite in keeping with his support to other socially relevant charities such as maintaining the Richmond road park, building and donating a police station, gifting assets to organizations providing accident and trauma care, to name a few.

The Rukmini Educational Charitable Trust drives with the main aim to help students who are in pursuit of quality education for life. REVA is today a family of ten institutions providing education from PU to Post Graduation and Research leading to M. Phil and PhD degrees. REVA has well qualified experienced teaching faculty of whom majority are doctorates. The faculty is supported by committed administrative and technical staff. Over 11,000 students study various courses across REVA's three campuses equipped with exemplary state-of-the-art infrastructure and conductive environment for the knowledge driven community.

ABOUT REVA UNIVERSITY

REVA University established under the Government of Karnataka Act 80 of the year 2012 and notified in the Karnataka Gazette dated 7th Feb, 2013, is located 14 kms away from the Bangalore International Airport on the way to Bangalore city. The university has a sprawling lush green campus spread over 42 acres of land equipped with state-of-the-art infrastructure and conductive environment for higher learning.

The REVA campus has well equipped laboratories, custom-built teaching facilities designed specifically to emulate working conditions, fully air-conditioned library and central computer centre. The well planned sports facility for variety of sports activities, facilities for cultural programs and friendly campus lifestyle add to the overall personality development of students. The campus also has residential facility for students, faculty and other staff.

Currently, REVA University offers 18 Post Graduate programs and 15 Graduate and P.G Diploma programs in Engineering and Technology, Science, Commerce and Management in addition to research degrees leading to PhD in different disciplines. The University aims to offer many more PG and UG programs in Science, Arts, Commerce, Engineering & Technology, Management Studies, Education, in the years to come.

The programs being offered by the REVA University are well planned and designed after detailed study with emphasis with knowledge assimilation, applications, global job market and their social relevance. Highly qualified, experienced faculty and scholars from reputed universities / institutions, experts from industries and business sectors have contributed in preparing the scheme of instruction and detailed curricula for this program. Greater emphasis on practice in respective areas and skill development to suit to respective job environment has been given while designing the curricula. The Choice Based Credit System and Continuous Assessment Graded Pattern (CBCS-CAGP) of education has been introduced in all programs to facilitate students to opt for subjects of their choice in addition to the core subjects of the study and prepare them with needed skills. The system also allows students to move forward under the fast track for those who have the capabilities to surpass others. These programs are taught by well experienced qualified faculty supported by the experts from industries, business sectors and such other organizations. REVA University has also initiated many supportive measures such as bridge courses, special coaching, remedial classes, etc., for slow learners so as to give them the needed input and build in them confidence and courage to move forward and accomplish success in their career. The University has also entered into MOUs with many industries, business firms and other institutions seeking their help in imparting quality education through practice, internship and also assisting students' placements.

ABOUT SCHOOL OF CIVIL ENGINEERING

The School of Civil Engineering is headed by highly experienced Professor of Civil Engineering and is supported by well qualified faculty members. The school has the state-of-art class rooms and well equipped laboratories. It offers B.Tech in Civil Engineering and M. Tech in Computer Aided Structural Engineering and M Tech in Transportation Engineering & Management. The school also has research program leading to doctoral degree. The curriculum of both graduate and post graduate degree programs have been designed to bridge the gap between industry – academia and hence they are industry application oriented. The M. Tech in Computer Aided Structural Engineering program aims to prepare human resources to play a leading role in the competitive construction field and excel in their endeavors. The program focuses on research and design in the core and Computer Aided Structural Engineering. The M.Tech in Transportation Engineering & Management aims to supplement and create a sustainable world and to enhance the global quality of life by adopting enhanced techniques of design and application. This is reflected in various core subjects offered within the program. Currently Civil Engineering teaching was limited to planning, analysis, design and execution of different types of infrastructure like buildings, roads, bridges, dams and power plants. However, due to increase of technological sophistication and demand for higher living standards geared up by economic growth and concerns about environmental impact have changed the scope of Civil Engineering. The challenges of today's Civil Engineering infrastructure are much more complex and interdependencies between resources.

Even though there are a large number of institutions in the country which are producing Civil Engineers, there is acute shortage of quality Civil Engineers. The REVA University would like to offer Civil Engineering Programme to produce quality engineers who are effective and efficient in problem solving and providing economical and sustainable infrastructural solutions.

Vision

To produce young Engineers of caliber, who would be committed to their profession with ethics, will be able to contribute to Civil Engineering and allied fields in optimizing usage of resources globally making the world more eco-friendly to live in.

Mission

- > To make the Department centre of excellence for training the undergraduate students.
- > To promote involvement of staff and students in research and advanced training.

> To develop good understanding skills in student communities about Civil Engineering, ethical practices, automation design and society need centric teaching and learning and imparting value addition skills.

ACADEMIC OBJECTIVES

- To prepare graduates and post graduates in CIVIL ENGINEERING who will excel in their professional career and contribute with commitment and dedication to the progress of the society and the nation.
- To enhance the understanding of the engineering principles of Civil Engineering systems.
- Graduates will be prepared with a solid foundation in mathematics, sciences, and technical skills needed to analyze and design civil infrastructure systems.
- The professional careers of our graduates will be distinguished with a high degree of awareness of moral, ethical, legal and professional obligations to protect human health, human welfare, and the environment.
- A commitment to continue assessment in continuing education.
- Our graduates will become team leaders, and will successfully address open-ended problems applying critical thinking.
- To promote faculty, researchers and students to participate in national and international conferences, seminars, workshops etc. and present their research outputs. Also research output to publish in journals of repute, publish books in relevant fields and popular articles for the benefit of the society at large.
- To organize conferences, seminars, workshops, special lectures, summer schools, technical talks, faculty development programmes etc. on emerging areas.
- To establish incubation centre and center of excellence in thrust areas in collaboration with industries.
- To organize and promote co-curricular and extra-curricular activities that inculcate among students concerned to the society.

ADVISORY BOARD

Sl. No.	Name of Members
1	Dr. A. Veeraraghavan, Professor,
	Department of Civil Engineering, IIT Madras, Room No:#234, Building Sciences
	Block, IIT Madras, Chennai-600036
	(o) 044-22574272 Fax:044-22570509 Email: av@iitm.ac.in
2	Mr. Nagaraj Kulkarni, Vice-President
	DivyaSree Developers (P) Ltd., DivyaSree Chambers, A Wing, #11, O'Shaughnessy
	Road, Shanthi Nagar, Bangalore 560 025.
	(M) 98452 11750 Email: nagaraj@divyasree.com
3	Dr. V. Ramachandra
	Zonal Head, Technical Services,
	Ultra Tech Cement Ltd., Industry House, 6th floor, #45, Race Course Road,
	Bangalore 560 001, (M)97432-47985
	Email: Ramachandra.v@adityabirla.com
4	Dr. Mattur C Narasimhan, Professor,
	Department of Civil Engineering, NIT, Surathkal,
	Karnataka 575 025
	(O) 0824-2474000Ext 3336 (R) 0824-2474336
	(M) 94491-63427 Email: mattur.cn@gmail.com
	mattur@nitk.ac.in
5	Dr. R.V. Ranganath. Dean (Academic), Principal
	Professor & HOD, Department of Civil Engineering, BMS College of Engineering,
	Bull Temple Road, Bangalore-560 019
	Currently Principal BMSIT, Yelahanka, Bangalore
	(M) 98450-86602
	Email: rangarv@yahoo.com

Program Educational Objectives (PEO's)

The programme educational objectives of the Civil Engineering of REVA University is to prepare graduates

PEO-1	To have successful professional careers in industry, government, academia and military as innovative
	engineers.
PEO-2	To successfully solve engineering problems associated with the lifecycle of Civil Engineering system,
	in particular structural engineering by communicating effectively either leading a team or as a team
	member
PEO-3	To continue to learn and advance their careers through activities such as research and development,
	acquiring doctoral degree, participation in national level research programmes, teaching and research
	at university level etc.,
PEO-4	To be active members ready to serve the society locally and internationally, may take up
	entrepreneurship for the growth of economy and to generate employment; and adopt the philosophy of
	lifelong learning to be aligned with economic and technological development.

Program Outcomes (POs)

After successful completion of the programme, the graduates shall be able to

- PO1. **Demonstrate in-depth knowledge** of computer aided structural Engineering, including wider and global perspective, with an ability to discriminate, evaluate, analyze and synthesize existing and new knowledge, and integration of the same for enhancement of knowledge.
- PO2. Analyze complex engineering problems critically, apply independent judgment for synthesizing information to make intellectual and/or creative advances for conducting research in structural engineering, wider theoretical, practical and policy context.
- PO3. Think laterally and originally, conceptualize and solve structural engineering problems, evaluate a wide range of potential solutions for those problems and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in computer aided structural Engineering

- PO4. Extract information pertinent to unfamiliar problems through literature survey and experiments, apply appropriate research methodologies, techniques and tools, design, conduct experiments, analyze and interpret data, demonstrate higher order skill and view things in a broader perspective, contribute individually/in group(s) to the development of scientific/technological knowledge in computer aided structural Engineering
- PO5. Create, select, learn and apply appropriate techniques, resources, and structural engineering and IT tools, including prediction and modeling, to complex engineering activities with an understanding of the limitations.
- PO6. Possess knowledge and understanding of group dynamics, recognize opportunities and contribute positively to **collaborative-multidisciplinary scientific research**, demonstrate a capacity for self-management and teamwork, decision-making based on open-mindedness, objectivity and rational analysis in order to achieve common goals and further the learning of themselves as well as others.
- PO7. Demonstrate knowledge and understanding of structural Engineering principles and apply the same to one's own work, as a **member and leader in a team**, manage projects efficiently in respective disciplines and multidisciplinary environments after consideration of economical and financial factors.
- PO8. **Communicate with the engineering community**, and with society at large, regarding complex Structural engineering activities confidently and effectively, such as, being able to comprehend and write effective reports and design documentation by adhering to appropriate standards, make effective presentations, and give and receive clear instructions.
- PO9: Recognize the need for, and have the preparation and ability to engage in **life-long learning** independently, with a high level of enthusiasm and commitment to improve knowledge and competence continuously.
- PO10. Acquire professional and intellectual integrity, professional **code of conduct**, **ethics of research** and scholarship, consideration of the impact of research outcomes on professional practices and an understanding of responsibility to contribute to the community for sustainable development of society.
- PO11. Observe and examine critically the outcomes of one's actions and make corrective measures subsequently, and **learn from mistakes** without depending on external feedback (**SELF learning**).

Programme Specific Outcomes (PSO's)

- 1) Apply knowledge of Structural Engineering and management in real time.
- 2) Analyse a system, component or process in the knowledge areas of Structural Engineering in real time problems.
- 3) Design a system, component, or process in more than one areas of Structural Engineering.
- 4) Conduct investigations and address complex Structural Engineering problems; Utilize and develop innovative tools and techniques that are appropriate in discipline. Structural Engineering.

Mapping of Course Outcomes with programme Outcomes

Course Code	POS/	PO1	P02	PO3	PO4	PO5	PO6	P7	PO8	PO9	PO	PO	PSO1	PSO2	PSO3	PSO4
2 54 0 67 1 0 4 0	COs										10	11				
M18SE1010	CO1	3	3	3	1	2		2	2	1		1	3	3	1	2
	CO2	3	3	3	1	2		2	1	1		1	3	3	1	2
	CO3	3	3	3	1	2		2	1	1		1	3	3	1	2
	CO4	3	3	3	1	2		2	1	1		1	3	3	1	2
M18SE1020	CO1	3	2	2		1		2	2	1	1	1	3	3	1	2
	CO2	3	2	2		1		2	2	1	1	1	3	3	1	2
	CO3	3	2	2		1		2	2	1	1	1	3	3	1	2
	CO4	3	2	2		1		2	2	1	1	1	3	3	1	2
M18SE1030	CO1	3	1	2		2		2	2	1		1	3	1	3	2
	CO2	3		2		2		2	2	1		1	3	1	3	2
	CO3	3		2		2		2	2	1		1	3	1	3	2
	CO4	3		2		2		2	2	1		1	3	1	3	2
M18SE1040	CO1	3	2	2		1			1		1	1	3	3	1	2
	CO2	3	2	2		1			1		1	1	3	3	1	2
	CO3	3	2	2		1			1		1	1	3	3	1	2
	CO4	3	2	2		1			1		1	1	3	3	1	2
M18SE1051	CO1	3	2	2		2			1	1		1	3	3	1	2
	CO2	3	2	2		2			1	1		1	3	3	1	2
	CO3	3	2	2		2			1	1		1	3	3	1	2
	CO4	3	2	2		2			1	1		1	3	3	1	2
M18SE1052	CO1	3	1	2		2		2	2	1		1	3	1	3	2
	CO2	3		2		2		2	2	1		1	3	1	3	2
	CO3	3		2		2		2	2	1		1	3	1	3	2
	CO4	3		2		2		2	2	1		1	3	1	3	2
M18SE1061	CO1	2	1		2	1	2	1	2		1	1	2	1	1	2
	CO2	2	1		2	1	2	1	2		1	1	2	1	1	2

	CO3	2			2	1	2	1	2		1	1	2	1	1	2
	CO4	2			2	1	2	1	2		1	1	2	1	1	2
M18SE1062	CO1	3	1	2		2		2	2	1		1	3	1	3	2
	CO2	3		2		2		2	2	1		1	3	1	3	2
	CO3	3		2		2	<u> </u>	2	2	1		1	3	1	3	2
	CO4	3		2		2	<u> </u>	2	2	1		1	3	1	3	2
M18SE1070	CO1	3	2	 ,	2	2	1		1	1		1	3	1	2	2
	CO2	3	2	ļ,	2	2	1		1	ļ,		1	3	1	2	2
	CO3	3	2		2	2	1		1	<u> </u>		1	3	1	2	2
	CO4	3	2	ļ,	2	2	1		1	ļ,		1	3	1	2	2
M18SE2010	CO1	3	3	3	1	2		2	2	1		1	3	3	1	2
	CO2	3	3	3	1	2		2	1	1		1	3	3	1	2
	CO3	3	3	3	1	2		2	1	1		1	3	3	1	2
	CO4	3	3	3	1	2		2	1	1		1	3	3	1	2
M18SE2020	CO1	3	1	2		2		2	2	1		1	3	1	3	2
	CO2	3		2		2	· '	2	2	1		1	3	1	3	2
	CO3	3		2		2		2	2	1		1	3	1	3	2
	CO4	3		2		2		2	2	1		1	3	1	3	2
M18SE2030	CO1	3	1	2		2		2	2	1		1	3	1	3	2
	CO2	3		2		2		2	2	1		1	3	1	3	2
	CO3	3		2		2		2	2	1		1	3	1	3	2
	CO4	3		2		2		2	2	1		1	3	1	3	2
M18SE2040	CO1	2	1	, <u> </u>	2	1	2	1	2	ļ,	1	1	2	1	1	2
	CO2	2	1		2	1	2	1	2		1	1	2	1	1	2
	CO3	2		'	2	1	2	1	2	<u> </u>	1	1	2	1	1	2
	CO4	2		<u> </u>	2	1	2	1	2	<u> </u>	1	1	2	1	1	2
M18SE2051	CO1	2	1	1			1	<u> </u>	1	<u> </u>			2	1		2
	CO2	2	2	2		1	1	['	1	<u> </u>	1		2	1	2	2
	CO3	2	2	2		1	1	'	1	<u> </u>	1		2	1	2	2
	CO4	2	2	2		1	1	<u> </u>	1	<u> </u>	1		2	1	2	2
M18SE2052	CO1	3	3	3	1	2	'	2	2	1	<u> </u>	1	3	3	1	2
	CO2	3	3	3	1	2	<u> </u>	2	1	1	['	1	3	3	1	2
	CO3	3	3	3	1	2	<u> </u>	2	1	1	<u> </u> '	1	3	3	1	2
	CO4	3	3	3	1	2	ļ'	2	1	1	_ '	1	3	3	1	2
M18SE2061	CO1	3	1	1	<u> </u>	2	1	2	1	' ا	 '		2	2	<u> </u>	1
	CO2	3	2	2	<u> </u>	2	1	2	1	' ا	 '		2	2	2	1
	CO3	3	2	2	 	2	1	2	1	' ا	ļ'	<u> </u>	2	2	2	1
	CO4	3	2	2	 	2	1	2	1	<u>ا</u>	<u> </u> '	<u> </u>	2	2	2	1
M18SE2062	CO1	3	1	2	 	2	<u> </u> '	2	2	1	<u> </u> '	1	3	1	3	2
	CO2	3	<u> </u>	2	<u> </u>	2	ļ'	2	2	1	 '	1	3	1	3	2
	CO3	3		2	<u> </u>	2	<u> </u>	2	2	1	<u> </u> '	1	3	1	3	2
	CO4	3		2	<u> </u>	2	<u> </u>	2	2	1	<u> </u> '	1	3	1	3	2
M18SE2070	CO1	2	3	3	2	3	1	<u> </u>	1	1	<u> </u>	1	3	3	3	2

	CO2	2	3	3	2	3	1	1	1	1	3	3	3	2
	CO3	2	3	3	2	3	1	1	1	1	3	3	3	2
	CO4	2	3	3	2	3	1	1	1	1	3	3	3	2
M18SE3010	CO1	3	2		2	2	1	1		1	3	1	3	2
	CO2	3	2		2	2	1	1		1	3	1	3	2
	CO3	3	2		2	2	1	1		1	3	1	3	2
	CO4	3	2		2	2	1	1		1	3	1	3	2

Mapping of PEOS with Respect to POs

	PO1	P2	PO3	PO4	PO5	PO6	P7	PO8	PO9	РО	РО	PSO1	PSO2	PSO3
										10	11			
PEO1														
PEO2														
PEO3														
PEO4														

CBCS (CHOICE BASED CREDIT SYSTEM) AND CAGP (CONTINUOUS ASSESSMENT AND GRADING PATTERN) OF EDUCATION AND ITS ADVANTAGES

CBCS is a proven, advanced mode of learning in higher education. It facilitates students to have freedom in making their own choices for acquiring a Degree / Master's Degree program. It is more focused towards the student's choice in providing a wide range of Units available in a single campus across various disciplines offered by experts in the subjects. It leads to quality education with active teacher-student participation.

Studying under CBCS has following advantages:

- Students may undergo training in cross-disciplinary and multi-disciplinary subjects and acquire more focused and preferred knowledge.
- Students may get more skills from other subject(s) which are required for the career path in addition to their regular subject knowledge.
- Students may get ample opportunities to use the laboratories and gain practical exposure to the much needed Units available in other departments/schools for want of scientific inputs.
- Courses are conducted by subject experts identified on the basis of their experiences. Courses taught by such experts may provide in-depth information and clear understanding of the Units.

- Students may get an opportunity to study courses with other students of different programs and exchange their views and knowledge in a common class room.
- CBCS provides a cross-cultural learning environment.
- Students may benefit much from selecting the right options to successfully face the public service examinations like UPSC, KPSC, IES wherein the knowledge of additional subjects become mandatory for general or optional papers.
- Students are exposed to the culture of universal brotherhood during their campus life.
- Students are allowed to practice various methods of learning a subject.

Summary of REVA University Regulations for Choice Based Credit System (CBCS) and Continuous Assessment Grading Pattern (CAGP) for Post Graduate Degree Program

1.0 Teaching and Learning Process

The teaching and learning process under CBCS-CAGP of education in each course of study will have three components, namely-

(i) L= Lecture (ii) T= Tutorial(iii) P= Practice, where:

L stands for Lecture session consisting of classroom instruction.

T stands for **Tutorial** session consisting participatory discussion / self-study/ desk work/ brief seminar presentations by students and such other novel methods that make a student to absorb and assimilate more effectively the contents delivered in the Lecture classes.

P stands for **Practice** session and it consists of Hands on Experience / Laboratory Experiments / Field Studies / Case Studies that equip students to acquire the much required skill component.

2.0. A course shall have either or all the three components. That means a course may have only lecture component, or only practical component or combination of any two or all the three components.

2.1. Various course of s**tudy** are labeled and defined as: (i) Core Course (CC) (ii) Hard Core Course (HC), (iii) Soft Core Course (SC), (iv) Foundation Core Course (FC) and (v) Open Elective Course (OE).

(i) **Core Course:** A course which should compulsorily be studied by a candidate as a core-requirement is termed as a Core course.

(ii) Foundation Course (FC):

The foundation Course is a core course which should be completed successfully as a part of graduate degree program irrespective of the branch of study.

(iii) Hard Core Course (HC):

The **Hard Core Course** is a Core Course in the main branch of study and related branch (es) of study, if any that the candidates have to complete compulsorily.

(iv) Soft Core Course (SC):

A Core course may be a **Soft Core** if there is a choice or an option for the candidate to choose a course from a pool of courses from the main branch of study or from a sister/related branch of study which supports the main branch of study.

(v) **Open Elective Course:**

An elective course chosen generally from other discipline / subject, with an intention to seek exposure is called an **Open Elective Course**.

2.2. Project Work:

Project work is a special course involving application of knowledge in solving / analyzing /exploring a real life situation / difficult problem.

2.3. Minor Project:

A project work up to **Six to Eight credits** is called **Minor Project** work. A Minor Project work may be a hard core or a Soft Core as decided by the BOS / concerned.

2.4. Major Project / Dissertation:

A project work of **EIGHT, TEN, TWELVE, SIXTEEN or TWENTY** credits is called **Major Project** work. The Major Project / Dissertation shall be Hard Core.

3.0. Minimum Credits to be earned:

3.1. A candidate has to earn 96 credits for successful completion of M Tech degree with a distribution of credits for different courses as prescribed by the university.

3.2. A candidate can enroll for a maximum of 26 credits per Semester. However he / she may not successfully earn a maximum of 26 credits per semester. This maximum of 26 credits does not include the credits of courses carried forward by a candidate.

3.3. Only such full time candidates who register for a minimum prescribed number of credits in each semester from I semester to IV semester and complete successfully 96 credits in 4 successive semesters shall be considered for declaration of Ranks, Medals, Prizes and are eligible to apply for Student Fellowship, Scholarship, Free ships, and such other rewards / advantages which could be applicable for all full time students and for hostel facilities.

4.0. Add- on Proficiency Certification:

In excess to the minimum of 96 credits for the M. Tech Degree program, a candidate can opt to complete a minimum of 4 extra credits either in the same discipline/subject or in different discipline / subject to acquire **Add on Proficiency Certification** in that particular discipline / subject along with the M. Tech degree.

4.1. Add on Proficiency Diploma:

In excess to the minimum of 96 credits for the M. Tech degree program, a candidate can opt to complete a minimum of 18 extra credits either in the same discipline/subject or in different discipline / subject to acquire Add on Proficiency Diploma in that particular discipline / subject along with the B. Tech degree. The Add - on Proficiency Certification / Diploma so issued to the candidate contains the courses studied and grades earned.

5.0. Continuous Assessment, Earning of Credits and Award of Grades.

5.1. The assessment and evaluation process happen in a continuous mode. However, for reporting purpose, a semester is divided into 3 components as C1, C2, and C3. The performance of a candidate in a course will be assessed for a maximum of 100 marks as explained below.

(i) Component C1:

The first Component (C1), of assessment is for 25 marks. This will be based on test, assignment / seminar. During the first half of the semester (i.e. by 8th week), the first 50% of the syllabus (Unit 1&2) will be completed. This shall be consolidated during the first three days of 8th week of the semester. A review test based on C1 will be conducted and completed in the beginning of the 9th week. In case of courses where test cannot be conducted, the form of assessment will be decided by the concerned school and such formalities of assessment will be completed in the beginning of the 9th week. The academic sessions will continue for C2 immediately after completion of process of C1.

The finer split - up for the award of marks in C1 is as follows:

Assignment	05 marks for Unit 1&2
Seminar	05 marks for Unit 1&2
Test (Mid-Term)	15 marks for Unit 1&2
Total	25 marks

(ii) Component C2:

The second component (C2), of assessment is for 25 marks. This will be based on test, assignment /seminar. The continuous assessment and scores of second half of the semester (9th to 16th week) will be consolidated during 16th week of the semester. During the second half of the semester the remaining units in the course will be completed. A review test based on C2 will be conducted and completed during 16th week of the semester. In case of courses where test cannot be conducted, the form of assessment will be decided by the concerned school and such formalities of assessment will be completed during 16th week.

The 17th week will be for revision of syllabus and preparation for the semester - end examination.

The finer split - up for the award of marks in C2 is as follows:							
Assignment	05 marks for Unit 3 & 4						
Seminar	05 marks for Unit 3 & 4						
Review Test (Mid-Term)	15 marks for Unit 3 & 4						
Total	25 marks						

(iii) Component C3:

The end semester examination of 3 hours duration for each course shall be conducted during the 18th & 19th week. This forms the third / final component of assessment (C3) and the maximum marks for the final component will be 50.

5.2. Setting Questions Papers and Evaluation of Answer Scripts:

- 5.2.1. There shall be three sets of questions papers set for each course. Two sets of question papers shall be set by the internal and one set by external examiner for a course. The Chairperson of the BoE shall get the question papers set by internal and external examiners.
- 5.2.2. The Board of Examiners shall scrutinize and approve the question papers and scheme of valuation.
- 5.2.3. There shall be single valuation for all theory papers by internal examiners. In case, the number of internal examiners falls short, external examiners may be invited. The answer scripts evaluated both by internal and external examiners shall be moderated by the external examiner / moderator.
- 5.2.4. The examination for Practical work/ Field work/Project work will be conducted jointly by two examiners (internal and external). However, in case of non-availability of external examiner or vice versa, the Chairperson BoE at his discretion can invite internal / external examiners as the case may be, if required.
- 5.2.5. If a course is fully of (L=0): T: (P=0) type, then the examination for C3 Component will be as decided by the BOS concerned.
- 5.2.6. In case of a course with only practical component a practical examination will be conducted with two examiners (ref: 6.3.4 above) and each candidate will be assessed on the basis of: a) Knowledge of relevant processes, b) Skills and operations involved, and c) Results / Products including calculation and reporting.
- 5.2.7. The duration for semester-end practical examination shall be decided by the School / Council.

5.3. Evaluation of Minor Project / Major Project / Dissertation:

Right from the initial stage of defining the problem, the candidate has to submit the progress reports periodically and also present his/her progress in the form of seminars in addition to the regular discussion with the supervisor. At the end of the semester, the candidate has to submit final report of the project / dissertation, as the case may be, for final evaluation. The components of evaluation are as follows:

Component – I	(C1)	Periodic Progress and Progress Reports (25%)
Component – II	(C2)	Results of Work and Draft Report (25%)
Component-III	(C3)	Final Evaluation and Viva-Voce (50%). Evaluation of the report is for 30% and the Viva-Voce examination is for 20%.

5.4. The schedule of continuous assessment and examinations are summarized in the following Table below.

Component	Period	Syllabus	Weightage	Activity
	1 st Week to 8 th	First 50%		Instructional process and
	Week	(two units)	25%	Continuous Assessment
	Last 3 days of 8th		23%	
C1	Week			
01	1 st Week to 8 th	First 50%		
	Week	(two units)	25%	Consolidation of C1
	Last 3 days of 8 th		23%	
	Week			
	9 th week to 16 th	Second 50%		Instructional process and
	week	(remaining two	25%	Continuous Assessment
C2		units)		
02	Last 3 days of 16 th	Second 50%		Consolidation of C2
	week	(remaining two		
		units)		
	17 th and 18 th week			Revision and preparation
				for Semester end
C3				examination
	19 th week to 20 th	Entire syllabus		Conduct of semester end
	week		50%	examination and
				Evaluation concurrently
	21 st week			Notification of Final
				Grades
*Evaluation	shall begin very first o	day after completio	on of the conduct	of examination of the first

final grades be announced latest by 21st week

- **Note:** 1. Practical examination wherever applicable shall be conducted before conduct of C2 Examination. The calendar of practical examination shall be decided by the respective School.
 - 2. Finally, **awarding the Grades** be announced latest by 5 days after completion of the examination.

6.0 Requirements to Pass a Course

- 6.1. A candidate's performance from all 3 components will be in terms of scores, and the sum of all three scores will be for a maximum of 100 marks (25 + 25 + 50). A candidate who secures a minimum of 30% in C1 and C2 together, and 40% and above in aggregate of C1, C2 and C3 in a course is said to be successful.
- 6.2. Eligibility to Appear for C3 (Semester end) Examination and Provision to Drop the Course. Only those students who fulfill 75% attendance requirement and who secure minimum 30% marks

in C1 and C2 together in a course are eligible to appear for C3 examination in that course.

- 6.3. Those students who have 75% of attendance but have secured less than 30% marks in C1 and C2 together in a course are not eligible to appear for C3 examination in that course. They are treated as dropped the course and they will have to repeat that course whenever it is offered. Teachers offering the courses will place the above details in the School Council meeting during the last week of the Semester, before the commencement of C3, and subsequently a notification pertaining to the above will be brought out by the Director of the School before commencement of C3 examination. A copy of this notification shall also be sent to the office of the Registrar & Registrar (Evaluation).
- 6.4. In case a candidate secures more than 30% in C1 and C2 together but less than 40% in aggregate of C1, C2 and C3 in a course is considered as unsuccessful and such a candidate may either opt to DROP that course or appear for C3 examination during the subsequent semesters / years within the stipulated period.

In such a case wherein he / she opts to appear for just C3 examination, then the marks secured in C1 and C2 shall get continued. Repeat C3 examination will be conducted in respective semesters.

6.5. In case a candidate opts to drop the course he / she has to re-register for the dropped course only in subsequent semesters whenever it is offered if it is Hard Core Course and he / she may choose alternative course if it is Soft Core Course or Open Elective course or Skill Development Course. The details of any dropped course will not appear in the Grade Card.

6.6. Provision to Withdraw Course:

A candidate can withdraw any course within ten days from the date of notification of final results. Whenever a candidate withdraws a course, he/she has to register for the same course in case it is hard core course, the same course or an alternate course if it is soft core/open elective. **A DROPPED course is automatically considered as a course withdrawn.**

7.0. Provision for Make- up Examination:

For those students who have secured less than 40% marks in C1, C2 and C3 (end semester examination) together; the university shall conduct a make-up C3 examination within three weeks after the end of each semester.

Such of those students who have secured more than 30% marks in C1 and C2 together and less than 40% marks in C1, C2, and C3 together in a course shall appear for make-up examination in that course. This make-up examination is only for C3examination.

A student who is absent to End Semester Examination (C3) due to medical emergencies or such other exigencies and fulfills the minimum attendance and performance requirements in C1 & C2 shall appear for make-up examination.

7.1 The candidate has to exercise his/her option immediately within 10 days from the date of notification of results. A MAKE-UP examination will be conducted within 25 days from the date of notification of results. If the candidate still remains unsuccessful after MAKE-UP examination he/she is said to have DROPPED that course

7.2 **Re-Registration and Re-Admission:**

A candidate's class attendance in aggregate of all courses in a semester is less than 75% or as stipulated by the University and is considered as dropped the semester and is not allowed to appear for end semester examination (C3) shall have to seek re-admission to that semester during subsequent semester / year within a stipulated period.

In case a candidate fails in more than 2 courses in odd and even semesters together in a given academic year, he / she may either drop all the courses and repeat the semester or reappear (C3 semester end examination) to such of those courses where in the candidate has failed during subsequent semester / year within a stipulated period.

7.3 In such a case where in a candidate drops all the courses in semester due to personal reasons, it is considered that the candidate has dropped the semester and he / she shall seek re-admission to such dropped semester.

7.4 Requirements to Pass the Semester and Provision to Carry Forward the Failed Subjects / Courses:

7.4.1 A candidate who secures a minimum of 30% in C1 and C2 and 40% and above in aggregate of C1,C2 and C3 in all the courses with credits prescribed in a semester is said to have passed that semester.

7.5. Provision to Carry Forward the Failed Subjects / Courses:

A student who has failed in 4 courses in 1^{st} and 2^{nd} semesters together shall move to 3^{rd} semester. And he / she shall appear for C3 examination of failed courses of the said semesters concurrently with 3^{rd} semester end examinations (C3) and 4^{th} semester end examinations (C3) of second year of study.

8.0 Attendance Requirement:

8.1. All students must attend every lecture, tutorial and practical classes.

- 8.2. In case a student is on approved leave of absence (e g:- representing the university in sports, games or athletics, placement activities, NCC, NSS activities and such others) and / or any other such contingencies like medical emergencies, the attendance requirement shall be minimum of 75% of the classes taught.
- 8.3. Any student with less than 75% of attendance in a course in aggregate during a semester shall not be permitted to appear to the end semester (C3) examination.
- 8.4. Teachers offering the courses will place the above details in the School / Department meeting during the last week of the semester, before the commencement of C3, and subsequently a notification pertaining to the above will be brought out by the Head of the School before the commencement of C3 examination. A copy of this notification shall also be sent to the office of the Registrar & Registrar (Evaluation).

8.5. Absence during mid-semester examination

In case a student has been absent from a mid-semester examination due to the illness or other contingencies he / she may give a request along with necessary supporting documents and certification from the concerned class teacher / authorized personnel to the concerned Head of the School, for make-up examination. The Head of the School may consider such request depending on the merit of the case and after consultation with course instructor and class teacher, and permit such student to appear for make-up mid semester examination.

8.6. Absence during end semester examination:

In case a student is absent for end semester examination on medical grounds or such other exigencies, the student can submit request for make-up examination, with necessary supporting documents and certification from the concerned class teacher / authorized personnel to the concerned Director of the School. The Director of the School may consider such request depending on the merit of the case and after consultation with class teacher, course instructor and permit such student to appear for make-up mid semester examination

9. Provisional Grade Card:

The tentative / provisional Grade Card will be issued by the Registrar (Evaluation) at the end of every Semester indicating the courses completed successfully. The provisional grade card provides **Semester Grade Point Average** (SGPA). This statement will not contain the list of DROPPED courses.

9.1 Challenge Valuation:

A student who desires to apply for challenge valuation shall obtain a Xerox copy of the answer script by paying the prescribed fee within 10 days after the announcement of the results. He / She can challenge the Grade awarded to him/her by surrendering the Grade Card and by submitting an

application along with the prescribed fee to the Registrar (Evaluation) within 15 days after the announcement of the results. This challenge valuation is only for C3 component.

The answer scripts for which challenge valuation is sought for shall be sent to another external examiner. The marks awarded will be the higher of the marks obtained in the challenge valuation and in maiden valuation.

- **9.2** Final Grade Card: Upon successful completion of the Post Graduate Degree a Final Grade card consisting of grades of all courses successfully completed by the candidate will be issued by the Registrar (Evaluation).
- **9.3** The Grade and the Grade Point: The Grade and the Grade Point earned by the candidate in the subject will be as given below.

Marks P	Grade G	Grade Point (GP=V x G)	Letter Grade
90-100	10	v*10	0
80-89	9	v*9	А
70-79	8	v*8	В
60-69	7	v*7	С
50-59	6	v*6	D
40-49	5	v*5	Е
0-39	0	v*0	F

O - Outstanding; A-Excellent; B-Very Good; C-Good; D-Fair; E-Satisfactory; F - Fail;

Here, P is the percentage of marks (P=[(C1+C2)+M] secured by a candidate in a course which is **rounded to nearest integer**. V is the credit value of course. G is the grade and GP is the grade point.

9.4 **Computation of SGPA and CGPA**

The Following procedure to compute the Semester Grade Point Average (SGPA)

The SGPA is the ratio of sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and the sum of the number of credits of all the courses undergone by a student, i.e

SGPA (Si) = \sum (Ci x Gi) / \sum Ci

Where Ci is the number of credits of the ith course and Gi is the grade point scored by the student in the ith course.

Illustration for Computation of SGPA and CGPA Illustration No. 1

Course	Credit	Grade letter	Grade Point	Credit Point
				(Credit x
				Grade)
Course 1	4	Α	9	4X9=36
Course 2	4	B	8	4X8=32
Course 3	4	С	7	4X7=28
Course 4	4	0	10	4X10=40
Course 5	4	D	6	4X6=24
Course 6	4	0	10	4X10=40
	24			200

Thus, $SGPA = 200 \div 24 = 8.33$

Illustration No. 2

Course	Credit	Grade letter	Grade Point	Credit Point
				(Credit x
				Grade point)
Course 1	5	Α	9	5X9=45
Course 2	5	С	7	5X7=35
Course 3	5	Α	9	5X9=45
Course 4	5	В	8	5X8=40
Course 5	4	0	10	4X10=40
	24			205

Thus, SGPA = 205 ÷ 24 = 8.54

9.5 Cumulative Grade Point Average (CGPA):

Overall Cumulative Grade Point Average (CGPA) of a candidate after successful completion of the required number of credits (96) for two year post graduate degree in Computer Science & Engineering is calculated taking into account all the courses undergone by a student over all the semesters of a program, i. e

 $CGPA = \sum (Ci \ x \ Si) / \sum Ci$

Where Si is the SGPA of the ith semester and Ci is the total number of credits in that semester.

The SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.

Illustration:

CGPA after Final Semester

Semester (ith)	No. of Credits (Ci)	SGPA (Si)	Credits x SGPA (Ci X Si)
1	24	8.33	24 x 8.33 = 199.92
2	24	8.54	24 x 8.54 = 204.96
3	24	9.35	24x9.35=224.4
4	24	9.50	24x9.50=228.0
Cumulative	96		857.28

Thus, $\mathbf{CGPA} = \underline{24x8.33 + 24x8.54 + 24x9.35 + 24x9.50}_{96} = 8.93$

CONVERSION OF GRADES INTO PERCENTAGE:

Conversion formula for the conversion of CGPA into Percentage is:

Percentage of marks scored = CGPA Earned x 10

Illustration: CGPA Earned 8.93 x 10=89.30

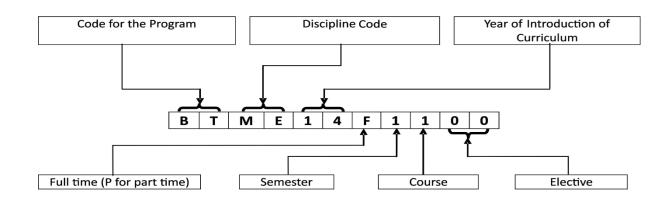
9.6 Classification of Results

The final grade point (FGP) to be awarded to the student is based on CGPA secured by the candidate and is given as follows.

	Numerical	FGP				
CGPA	Index	Qualitative Index				
> 4 CGPA < 5	5	SECOND CLASS				
5 > = CGPA < 6	6					
6 >= CGPA < 7	7					
7 >= CGPA < 8	8	FIRST CLASS				
8 >= CGPA < 9	9	DISTINCTION				
9 >= CGPA 10	10	DISTINCTION				

Overall percentage=10*CGPA

10.0. Provision for Appeal


If a candidate is not satisfied with the evaluation of C1 and C2 components, he/she can approach the grievance cell with the written submission together with all facts, the assignments, test papers etc, which were evaluated. He/she can do so before the commencement of semester-end examination. The grievance cell is empowered to revise the marks if the case is genuine and is also empowered to levy penalty as prescribed by the university on the candidate if his/her submission is found to be baseless and unduly motivated. This cell may recommend taking disciplinary/corrective action on an evaluator if he/she is found guilty. The decision taken by the grievance cell is final.

11.0. Grievance Cell

For every program there will be one grievance cell. The composition of the grievance cell is as follows:-

- o The Registrar (Evaluation) Ex-officio Chairman / Convener
- One Senior Faculty Member (other than those concerned with the evaluation of the course concerned) drawn from the school / department/discipline and/or from the sister schools / departments/sister disciplines – Member.
- One Senior Faculty Members / Subject Experts drawn from outside the University school
 / department Member.
- **12.0.** With regard to any specific case of ambiguity and unsolved problem, the decision of the Vice-Chancellor shall be final.

Course Numbering Scheme

List of Codes for Programs and Disciplines / Branch of Study

Program Code	Title of the Program	Discipline Code	Name of the Discipline / Branch of Study
BA	Bachelor of Arts	AE	Advanced Embedded Systems
BB	BBM (Bachelor of Business	AI	Advanced Information Technology
BC	B.Com (Bachelor of Commerce)	AP	Advanced Power Electronics
BR	B. Arch (Bachelor of Architecture)	CA	Computer Aided Structural Engineering
BS	B Sc, BS (Bachelor of Science)	CE	Civil Engineering
BT	B.Tech (Bachelor of Technology)	СН	Chemistry
BP	Bachelor of Computer Applications	СО	Commerce
BL	LLB (Bachelor of Law)	CS	Computer Science and Engineering /
MA	Master of Arts	DE	Data Engineering and Cloud
MB	MBA (Master of Business Administration)	EC	Electronics and Communication Engineering
MC	M.Com (Master of Commerce)	EN	English
MS	M.Sc / MS (Master of Science)	MD	Machine Design and Dynamics
MT	M Tech (Master of Technology)	ME	Mechanical Engineering
MC	Master of Computer Applications	EE	Electrical & Electronics Engineering

SCHOOL OF CIVIL ENGINEERING M. Tech in COMPUTER AIDED STRUCTURAL ENGINEERING (2018-2020)

I SEMESTER

Sl. No	Course Code	Title of the Course	HC/SC/OE	Pre requisite		edit Cred		ern & alue	Contact Hours	
INO	Code			-	L	Т	P	Total	nours	
1	M18SE1010	Computational Structural Mechanics	НС		3	1	-	4	5	
2	M18SE1020	Computational Structural Dynamics	НС	ering	3	1	-	4	5	
3	M18SE1030	Advanced Design of RC Structures	НС	BE / B. TECH in Civil Engineering	3	1	-	4	5	
4	M18SE1040	Advanced Solid Mechanics	НС	3	1	-	4	5		
5	M18SE1051	Advanced Structural Analysis	SC	ECH ir	3	1	-	4	5	
	M18SE1052	Design of Bridges	SC	3. TJ	3	1	-	4	5	
6	M18SE1061	Special Concretes	SC	BE/I	3	1	-	4	5	
6	M18SE1062	Design of Tall Structures	SC		3	1	-	4	5	
TOT	ΓAL							24	30	
	1		Practical							
7	M18SE1070	Structural Engineering Laboratory-I (Concrete Laboratory)	НС		0	0	4	4	3	
	TOTAL							04	03	
		TOTAL SEMEST	TER CREDITS	5					28	
		TOTAL CUMULA	TIVE CREDI	ГS					28	
		TOTAL CONT.	ACT HOURS					33		

SCHOOL OF CIVIL ENGINEERING M. Tech in COMPUTER AIDED STRUCTURAL ENGINEERING (2018-2020) II SEMESTER

SI.	Course	Title of the Course	HC/SC	Pre requisite		edit Cred		ern & alue	Contact
No	Code		/OE		L	Т	Р	Total	Hours
1	M18SE2010	Finite Element Method of Analysis	НС		3	1	-	4	5
2	M18SE2020	Advanced design of foundations	ering	3	1	-	4	5	
3	M18SE2030	Advanced Design of Steel Structures	HC	BE / B. TECH in Civil Engineering	3	1	-	4	5
4	M18SE2040	Structural Health Monitoring	Civil]	3	1	-	4	5	
5	M18SE2051	Design of Earthquake Resistant Structures	SC	3CH in	3	1	-	4	5
5	M18SE2052	Stability Analysis of Structures	SC	/B. TH	3	1	-	4	5
6	M18SE2061	Reliability Analysis and Design of Structures	SC	BE	3	1	-	4	5
0	M18SE2062	Advanced Design of Prestressed concrete	SC		3	1	-	4	5
TOT	ΓAL							24	30
	Γ		Practical		r —	1		[
7	M18SE2070	Structural Engineering Laboratory-II (Software Lab)	НС		0	0	4	4	3
	TOTAL							04	03
		TOTAL SEMESTER	CREDIT	S					28
		TOTAL CUMULATIV	'E CREDI	TS					56
		TOTAL CONTACT	Γ HOURS						33

SCHOOL OF CIVIL ENGINEERING M. Tech in COMPUTER AIDED STRUCTURAL ENGINEERING (2018-2020) III SEMESTER

Sl. No	Course Code	Title of the Course	Practical /Term Work	Pre requisite		redit Cred		ern & lue	Contact Hours	
110		Course	/ Sessions	requisite	L	T	P	Total	liouis	
1	M18SE3010 / M18TE3010	Roads and Building Structures	OE	4	0	0	4	4		
2	M18SE3020	Internship with Report	Term Work and Viva - Voce	B. TECH in Civil Engineering	0	0	0	12		
3	M18SE3030	Project Phase-I	Report and Viva -Voce	BE/B. Er	0	0	0	04		
		TOTAL						20		
	TOTAL SEMESTER CREDITS									
		TOTAL CUMUL	ATIVE CRED	ITS				76		
		TOTAL CON	TACT HOURS						-	

SCHOOL OF CIVIL ENGINEERING

M. Tech in COMPUTER AIDED STRUCTURAL ENGINEERING (2018-2020)

IV SEMESTER

Sl. No	Course Code	Title of the Course	Practical /Term Work	Pre requisite	-	edit Cred		ern & due	Contact Hours
			/ Sessions		L	Т	Р	Total	
1	M18SE4010	Technical Seminar With Report	Term Work		0	0	0	4	
2	M18SE4020	Dissertation Phase-II	Thesis Submission and Viva- Voce		0	0	0	16	
		TOTAL						20	
		TOTAL SEME	STER CREDIT	S					20
		TOTAL CUMUL	ATIVE CREDI	TS				96	
		TOTAL CON	TACT HOURS					-	

Note: 1) OPEN ELECTIVE Courses are offered for the students of other Schools. The students of the School of Civil Engineering have to **choose ONE Open Elective offered by other schools**.

2) Open elective Classes will be conducted on Saturdays only

Open Elective:M18SE3010/M18TE3010- Roads and Building Structures

FIRST SEMESTER

M18SE1010				L	Τ	P	С	Hrs.				
Duration: 16weeks	COMPUT	CATIONAL STRUCTUR	RAL MECHANICS	3	1	0	4	5				
Internal Assessment:	50 Marks	Semester End Examin	ation: 50 Marks (Mir	nimu	m 20) Ma	rks)					
Prerequisite: Stru	Prerequisite: Structural Analysis I and II											
Course Objectives: Student will be able to learn												
1. To learn the concepts and principles of structural analysis and develop element stiffness and flexibility matrices.												
2. To analyze framed structures subjected to direct and indirect loadings by flexibility and stiffness												
methods using	force/displace	ement transformation matr	ices (element approach).								
	•	ed structures using standa	rd structural analysis so	oftwa	re							
4. To learn an enti	ire system an	alysis of structures										
Course Outcome	After succe	ssful completion of this co	urse the student will h	e ahle	to،							
		d principles of structural a				eme	nt sti	ffness				
and flexibility r	•			omp								
•		ructures subjected to direct	t and indirect loadings	oy fle	xibili	ity ar	nd sti	ffness				
		ement transformation matr	-			•						
3. Have learnt the	analysis of f	ramed structures using star	ndard structural analysi	s soft	ware							
4. Be able analyze	e every comp	onent of a structure										
		UNIT-I				12	HO	URS				
Introduction: Classifica	tion of struct	tures, Static and Kinemati	c indeterminacy, Equi	ibriu	m an							
		les of minimum potential	• •				-	-				
Concepts of stiffness an	d flexibility,	Coordinate systems, Relat	ion between element ar	d str	actur	e flex	kibili	ty and				
stiffness matrices, Prin	ciple of con	tra-gradience, Developme	nt of element flexibil	ity aı	nd el	emer	nt sti	ffness				
matrices for bar, beam,	plane frame	and truss elements.										
		UNIT-II				12	2 HC	URS				
•		of redundants based o		•								
		equivalent joint loads, D	-									
		ntinuous beams, rigid plan	e frames and plane tru	sses (not n	nore	than	6x6				
structure flexibility mat								_				
		coordinates based on de	-									
	•	nt of Displacement-transfo	•	-				nces				
for continuous beams, r	igid plane fra	imes and plane trusses (not	more than 6x6 structu	re sti	tness							
		UNIT-III						URS				
•	•	by transformation approa	•									
		on of supports, Analysis	-	-		oint	ed p	lane				
-		matrix (not more than 3x3	•				na f.					
• •	-	lity method (not more tha		ny m	atr1X) US1	ng to	nce-				
u ansiormation matrix, c	consideration	s for lack of fit and therma UNIT-IV	n su'esses.			10		UDC				
Analysis using Stiffers	a mothed b		he analysis of contin-	10122	haar			URS				
Analysis using Sulfne	ss memou D	y transformation approac	in analysis of continu	ious	Jean	18, D	callis					

elastic supports, beams with rotation of supports, Analysis of non-sway and sway rigid jointed plane frames using displacement-transformation matrix (not more than 3x3 structure stiffness matrix). Analysis of plane trusses by stiffness method (not more than 3x3 structure stiffness matrix) using displacement-transformation matrix, considerations for lack of fit and thermal stresses.

REFERENCE BOOKS:

- 1. S.Rajasekaran, "Computational Structural Mechanics", PHI, New Dehi 2001.
- 2. C.S.Reddy, "Basic Structural Analysis", TMH, New Delhi 2001.
- 3. W.Weaver and J.H.Gere, "Matrix Analysis of Framed Structures", Van Nastran, 1980.
- 4. A.K.Jain "Advanced Structural Analysis with Computer Application", Nemchand and Brothers, Roorkee, India.
- 5. M.F.Rubinstein "Matrix Computer Methods of Structural Analysis "Prentice Hall.
- 6. Devdas Menon, "Advanced Structural Analysis", Narosa Publishers

Mapping of Course Outcomes with programme Outcomes

Course Code	POS/C Os	P 01	P 02	Р О3	Р О4	Р О5	P 06	Р 07	P 08	P 09	PO 10	PO 11	PS O1	PS O2	PS O3	PS O4
M18SE1	CO1	3	3	3	1	2		2	2	1		1	3	3	1	2
010	CO2	3	3	3	1	2		2	1	1		1	3	3	1	2
	CO3	3	3	3	1	2		2	1	1		1	3	3	1	2
	CO4	3	3	3	1	2		2	1	1		1	3	3	1	2

Where, 1 (Low), 2 (Medium) and 3 (High) represents strength of correlation between CO and PO.

M18SE1020		L	Т	Р	С	Hrs
Duration: 16weeks	COMPUTATIONAL STRUCTURAL DYNAMICS	3	1	0	4	5
Internal Assessment:	50 Marks Semester End Examination: 50 Marks (Mi			-		
	I					
-	eering Mechanics, Structural Analysis II					
Course Objective	S :Student will be able to learn					
	cepts and principles of structural mechanics					
2. To frame mathe	ematical models of SDOF and MDOF systems and analys	the the	e cor	respo	ondin	g fre
-	se of damped and undamped systems					
	ematical models of SDOF and MDOF systems and analyze	the c	corres	spone	ling	force
•	se of damped and undamped systems					
4. To learn about p	rinciple of vibration-measuring instruments and evaluation of	dam	ping			
Course Outcome	After successful completion of this course the student will be	e able	e to:			
1. Has learnt the c	concepts and principles of structural mechanics					
2. Is able to frame	mathematical models of SDOF and MDOF systems and analy	yse tł	ne con	rresp	ondir	ng fre
vibration respon	nse of damped and undamped systems					
3. Is able to fram	e mathematical models of SDOF and MDOF systems and a	inaly	se the	e cor	respo	ondin
forced vibration	n response of damped and undamped systems					
4 II	t min sints of silvestion, as sourcing instances and such sation					
4. Has learnt abou	t principle of vibration-measuring instruments and evaluation	of da	ampii	ng		
4. Has learnt abou		of da	ampii	-	2 HC	DURS
	UNIT-I		-	12		
Dynamical problems in	UNIT-I Civil Engineering, Concepts of degrees of freedom and		-	12		
Dynamical problems in principle, principle of v	UNIT-I Civil Engineering, Concepts of degrees of freedom and irtual displacement and energy principles.	l vibr	ation	12 , D'2	Alem	ıbert'
Dynamical problems in principle, principle of v Free Vibration of Sing	UNIT-I Civil Engineering, Concepts of degrees of freedom and rirtual displacement and energy principles. gle-degree-of-freedom systems: Mathematical models of S	l vibr SDOF	ation F sys	12 , D'.	Alem exar	ibert' nple
Dynamical problems in principle, principle of v Free Vibration of Sing problems, Free vibration	UNIT-I Civil Engineering, Concepts of degrees of freedom and irtual displacement and energy principles. gle-degree-of-freedom systems: Mathematical models of S n response of damped and undamped systems, measurement of	l vibr SDOF	ation F sys	12 , D'.	Alem exar	ibert' nple
Dynamical problems in principle, principle of v Free Vibration of Sing	UNIT-I Civil Engineering, Concepts of degrees of freedom and irtual displacement and energy principles. gle-degree-of-freedom systems: Mathematical models of S n response of damped and undamped systems, measurement of	l vibr SDOF	ation F sys	12 , D', tem, g, Log	Alem exar garith	ibert' nple nmic
Dynamical problems in principle, principle of v Free Vibration of Sing problems, Free vibration decrement, half power l	UNIT-I Civil Engineering, Concepts of degrees of freedom and irtual displacement and energy principles. gle-degree-of-freedom systems: Mathematical models of S n response of damped and undamped systems, measurement of bandwidth method.	l vibr SDOF of dar	ation 7 sys nping	12 , D', tem, g, Log	Alem exar garith 2 HC	ibert' nple nmic
Dynamical problems in principle, principle of v Free Vibration of Sing problems, Free vibration decrement, half power l Free Vibration of Multi	UNIT-I Civil Engineering, Concepts of degrees of freedom and irtual displacement and energy principles. gle-degree-of-freedom systems: Mathematical models of S n response of damped and undamped systems, measurement of bandwidth method. UNIT-II	l vibr SDOF of dan	ation 7 sys nping	12 , D', tem, g, Log 12 ee vit	Alem exar garith 2 HC pratic	nple nmic DURS
Dynamical problems in principle, principle of v Free Vibration of Sing problems, Free vibration decrement, half power l Free Vibration of Multi undamped MDOF sys	UNIT-I Civil Engineering, Concepts of degrees of freedom and rirtual displacement and energy principles. gle-degree-of-freedom systems: Mathematical models of S n response of damped and undamped systems, measurement of bandwidth method. UNIT-II i-degree freedom systems: Mathematical models of MDOF systems:	l vibr SDOF of dan ystem	ation F sys nping	12 , D', tem, g, Log 12 ze vit	Alem exar garith 2 HC oratio dame	nple nmic DURS
Dynamical problems in principle, principle of v Free Vibration of Sing problems, Free vibration decrement, half power l Free Vibration of Multi undamped MDOF sys	UNIT-I Civil Engineering, Concepts of degrees of freedom and irtual displacement and energy principles. gle-degree-of-freedom systems: Mathematical models of S n response of damped and undamped systems, measurement of bandwidth method. UNIT-II d-degree freedom systems: Mathematical models of MDOF systems stems -Shear building concept, Natural frequency, importal frequency for different structures, relation between freque	l vibr SDOF of dan ystem	ation F sys nping	12 , D', tem, g, Log 12 ze vit	Alem exar garith 2 HC oratio dame	nple nmic DURS
Dynamical problems in principle, principle of v Free Vibration of Sing problems, Free vibration decrement, half power l Free Vibration of Multi undamped MDOF sys frequency, finding natu mode shapes – orthogon	UNIT-I Civil Engineering, Concepts of degrees of freedom and irtual displacement and energy principles. gle-degree-of-freedom systems: Mathematical models of S n response of damped and undamped systems, measurement of bandwidth method. UNIT-II I-degree freedom systems: Mathematical models of MDOF systems -Shear building concept, Natural frequency, importal frequency for different structures, relation between freque nality conditions,	l vibr SDOF of dan ystem ortanc ncy a	ation 7 sys nping ns, free and ti	$\frac{12}{1}$, D'. tem, g, Log $\frac{12}{1}$ ee vit fun me p	Alem exar garith 2 HC oratio dame eriod	nple nmic DURS on of ental and
Dynamical problems in principle, principle of v Free Vibration of Sing problems, Free vibration decrement, half power l Free Vibration of Multi undamped MDOF sys frequency, finding natu mode shapes – orthogon	UNIT-I Civil Engineering, Concepts of degrees of freedom and irtual displacement and energy principles. gle-degree-of-freedom systems: Mathematical models of S n response of damped and undamped systems, measurement of bandwidth method. UNIT-II i-degree freedom systems: Mathematical models of MDOF systems -Shear building concept, Natural frequency, imporal frequency for different structures, relation between freque nality conditions, ed MDOF systems. damping properties, critical damping ratio	l vibr SDOF of dan ystem ortanc ncy a	ation 7 sys nping ns, free and ti	$\frac{12}{1}$, D'. tem, g, Log $\frac{12}{1}$ ee vit fun me p	Alem exar garith 2 HC oratio dame eriod	nple nmic DURS on of ental and
Dynamical problems in principle, principle of v Free Vibration of Sing problems, Free vibration decrement, half power l Free Vibration of Multi undamped MDOF sys frequency, finding natu mode shapes – orthogon	UNIT-I Civil Engineering, Concepts of degrees of freedom and irtual displacement and energy principles. gle-degree-of-freedom systems: Mathematical models of S in response of damped and undamped systems, measurement of bandwidth method. UNIT-II i-degree freedom systems: Mathematical models of MDOF systems -Shear building concept, Natural frequency, importal frequency for different structures, relation between freque nality conditions, ed MDOF systems. damping properties, critical damping rate tayleigh's and Cauchey's damping methods	l vibr SDOF of dan ystem ortanc ncy a	ation 7 sys nping ns, free and ti	$\frac{12}{1}$, D'. tem, g, Log $\frac{12}{1}$ ee vit fun me p ic loa	Alem exar garith 2 HC oratio dame eriod	nple nmic DURS on of ental and ctor,
Dynamical problems in principle, principle of v Free Vibration of Sing problems, Free vibration decrement, half power l Free Vibration of Multi undamped MDOF sys frequency, finding natu mode shapes – orthogon Free vibration of damp magnification factor, R	UNIT-I Civil Engineering, Concepts of degrees of freedom and irtual displacement and energy principles. gle-degree-of-freedom systems: Mathematical models of S n response of damped and undamped systems, measurement of bandwidth method. UNIT-II i-degree freedom systems: Mathematical models of MDOF systems -Shear building concept, Natural frequency, importal frequency for different structures, relation between freque nality conditions, ed MDOF systems. damping properties, critical damping rational tayleigh's and Cauchey's damping methods UNIT-III	l vibr SDOF of dar ystem ortanc ncy a	ation F sys nping ns, free e of and ti	$\frac{12}{1}$, D'. tem, g, Log $\frac{12}{1}$ ee vit fun me p ic loa	Alem exar garith 2 HC oratio dame eriod ad fac	bert' nple nmic DURS on of ental and ctor,
Dynamical problems in principle, principle of v Free Vibration of Sing problems, Free vibration decrement, half power l Free Vibration of Multi undamped MDOF sys frequency, finding natu mode shapes – orthogon Free vibration of damp magnification factor, R Forced Vibration of SE	UNIT-I Civil Engineering, Concepts of degrees of freedom and irtual displacement and energy principles. gle-degree-of-freedom systems: Mathematical models of S n response of damped and undamped systems, measurement of bandwidth method. UNIT-II i-degree freedom systems: Mathematical models of MDOF systems -Shear building concept, Natural frequency, imporal frequency for different structures, relation between freque nality conditions, ed MDOF systems. damping properties, critical damping rationality conditions, UNIT-III DOF Systems: Response damped and undamped systems to 1	l vibr SDOF of dan ystem rtanc ncy a io, dy	ation 7 sys nping ns, free e of and ti ynam	$\frac{12}{1}$, D'. tem, d'. g, Log $\frac{12}{1}$ tee vit fun me point ic loa	Alem exar garith 2 HC oratio dame eriod ad fae 2 HC	nple nmic DURS on of ental and ctor,
Dynamical problems in principle, principle of v Free Vibration of Sing problems, Free vibration decrement, half power l Free Vibration of Multi undamped MDOF sys frequency, finding natu mode shapes – orthogon Free vibration of damp magnification factor, R Forced Vibration of SI motion, evaluation of	UNIT-I Civil Engineering, Concepts of degrees of freedom and irtual displacement and energy principles. gle-degree-of-freedom systems: Mathematical models of S n response of damped and undamped systems, measurement of bandwidth method. UNIT-II d-degree freedom systems: Mathematical models of MDOF systems -Shear building concept, Natural frequency, importal frequency for different structures, relation between freque nality conditions, ed MDOF systems. damping properties, critical damping rationality conditions, UNIT-III DOF Systems: Response damped and undamped systems to 1 damping, vibration isolation, transmissibility, response to 1	l vibr SDOF of dan ystem rtanc ncy a io, dy	ation 7 sys nping ns, free e of and ti ynam	$\frac{12}{1}$, D'. tem, d'. g, Log $\frac{12}{1}$ tee vit fun me point ic loa	Alem exar garith 2 HC oratio dame eriod ad fae 2 HC	nple nmic DURS on of ental and ctor,
Dynamical problems in principle, principle of v Free Vibration of Sing problems, Free vibration decrement, half power l Free Vibration of Multi undamped MDOF sys frequency, finding natu mode shapes – orthogon Free vibration of damp magnification factor, R Forced Vibration of SE	UNIT-I Civil Engineering, Concepts of degrees of freedom and irtual displacement and energy principles. gle-degree-of-freedom systems: Mathematical models of S n response of damped and undamped systems, measurement of bandwidth method. UNIT-II d-degree freedom systems: Mathematical models of MDOF systems -Shear building concept, Natural frequency, importal frequency for different structures, relation between freque nality conditions, ed MDOF systems. damping properties, critical damping rationality conditions, UNIT-III DOF Systems: Response damped and undamped systems to 1 damping, vibration isolation, transmissibility, response to 1	l vibr SDOF of dan ystem rtanc ncy a io, dy	ation 7 sys nping ns, free e of and ti ynam	$\frac{12}{1}$, D'. tem, d'. g, Log $\frac{12}{1}$ tee vit fun me po ic loa ic loa	Alem exar garith 2 HC oratio dame eriod ad fae 2 HC	bert' nple nmic DURS on of ental and ctor,
Dynamical problems in principle, principle of v Free Vibration of Sing problems, Free vibration decrement, half power l Free Vibration of Multi undamped MDOF sys frequency, finding natu mode shapes – orthogon Free vibration of damp magnification factor, R Forced Vibration of SE motion, evaluation of unbalance, reciprocatin	UNIT-I Civil Engineering, Concepts of degrees of freedom and irtual displacement and energy principles. gle-degree-of-freedom systems: Mathematical models of S n response of damped and undamped systems, measurement of bandwidth method. UNIT-II d-degree freedom systems: Mathematical models of MDOF systems -Shear building concept, Natural frequency, importal frequency for different structures, relation between freque nality conditions, ed MDOF systems. damping properties, critical damping rate cayleigh's and Cauchey's damping methods UNIT-III DOF Systems: Response damped and undamped systems to 1 damping, vibration isolation, transmissibility, response to gunbalance.	l vibr SDOF of dar ysterr rtanc ncy a io, dy harm perio	ation F sys nping ns, free of and ti ynam onic odic	$ \begin{array}{c} 12\\ , D'.\\ tem,\\ g, Log\\ 12\\ ee vit\\ fun\\ me p\\ ic loa\\ 12\\ loadi force \end{array} $	Alem exar garith 2 HC oratio dame eriod ad fac ad fac 2 HC	nple nmic DURS on of ental and ctor, DURS uppor otation
Dynamical problems in principle, principle of v Free Vibration of Sing problems, Free vibration decrement, half power l Free Vibration of Multi undamped MDOF sys frequency, finding natu mode shapes – orthogon Free vibration of damp magnification factor, R Forced Vibration of SI motion, evaluation of unbalance, reciprocatin Numerical methods ap	UNIT-I UNIT-I Civil Engineering, Concepts of degrees of freedom and irtual displacement and energy principles. gle-degree-of-freedom systems: Mathematical models of S on response of damped and undamped systems, measurement of bandwidth method. UNIT-II degree freedom systems: Mathematical models of MDOF systems -Shear building concept, Natural frequency, importal frequency for different structures, relation between freque nality conditions, ed MDOF systems. damping properties, critical damping rate cayleigh's and Cauchey's damping methods UNIT-III DOF Systems: Response damped and undamped systems to 1 damping, vibration isolation, transmissibility, response to gunbalance. oplied to SDOF, Direct integration and Duhamel integration	l vibr SDOF of dar ysterr rtanc ncy a io, dy harm perio	ation F sys nping ns, free of and ti ynam onic odic	$ \begin{array}{c} 12\\ , D'.\\ tem,\\ g, Log\\ 12\\ ee vit\\ fun\\ me p\\ ic loa\\ 12\\ loadi force \end{array} $	Alem exar garith 2 HC oratio dame eriod ad fac ad fac 2 HC	nple nmic DURS on of ental and ctor, DURS uppor
Dynamical problems in principle, principle of v Free Vibration of Sing problems, Free vibration decrement, half power l Free Vibration of Multi undamped MDOF sys frequency, finding natu mode shapes – orthogon Free vibration of damp magnification factor, R Forced Vibration of SI motion, evaluation of unbalance, reciprocatin Numerical methods ap	UNIT-I Civil Engineering, Concepts of degrees of freedom and irtual displacement and energy principles. gle-degree-of-freedom systems: Mathematical models of S n response of damped and undamped systems, measurement of bandwidth method. UNIT-II d-degree freedom systems: Mathematical models of MDOF systems -Shear building concept, Natural frequency, importal frequency for different structures, relation between freque nality conditions, ed MDOF systems. damping properties, critical damping rate cayleigh's and Cauchey's damping methods UNIT-III DOF Systems: Response damped and undamped systems to I damping, vibration isolation, transmissibility, response to gunbalance.	l vibr SDOF of dar ysterr rtanc ncy a io, dy harm perio	ation F sys nping ns, free of and ti ynam onic odic	$\frac{12}{1}$, D', tem, g, Log $\frac{12}{12}$ ee vit fun me p ic loa loadi force	Alem exar garith 2 HC oratio dame eriod ad fae 2 HC ing si es, rc	nple nmic DURS on of ental and ctor, DURS uppor otation

- free and forced vibration with and without damping.Stiffness matrix, mass matrix (lumped and consistent); equations of motion for the discretized beam in matrixform.

Dynamics of Continuous systems: Free longitudinal vibration of bars, flexural vibration of beams with different end conditions i.e simply supported, fixed at both ends, one end fixed other end free, both ends free, forced vibrations – response of beams under moving loads, concentrated load, chain of loads, wave propagation in solids

REFERENCE BOOKS:

- 1. Mario Paz, "Structural dynamics-Theory and Computation", CBS Publishers
- 2. R.W. Clough & J. Penzien, "Dynamics of Structures", McGraw Hill
- 3. Anil K. Chopra, "Dynamics of Structures", Prentice Hall of India
- 4. Timoshenko, S., "Vibration Problems in Engineering", VanNostrand Co.,
- 5. Mukhopadhyaya, "Vibration and Structural Dynamics", Oxford &IBH
- 6. William Thompson, "Theory of Vibration with Applications"
- 7. William Seto, "Mechanical Vibrations", McGraw Hill Pub., (Schaum Series)

Mapping of Course Outcomes with programme Outcomes

Course Code	POS/C Os	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PS O1	PS O2	PS O3	PS O4
M18SE10	CO1	3	2	2		1		2	2	1	1	1	3	3	1	2
20	CO2	3	2	2		1		2	2	1	1	1	3	3	1	2
	CO3	3	2	2		1		2	2	1	1	1	3	3	1	2
	CO4	3	2	2		1		2	2	1	1	1	3	3	1	2

Where, 1 (Low), 2 (Medium) and 3 (High) represents strength of correlation between CO and PO.

M18SE1030

Duration	: 16week	s	AL	VAN							CTUR		3	1	0	4	5
Internal A	ssessmen	nt: 50	Marl	KS	Sem	ester	End	Exan	ninati	on: 5	0 Ma	rks (M	linimu	ım 20) Mar	ks)	
Prerequisi	te: Desig	n of F	RCC S	Structu	ural E	lemer	nts										
COURSE	COBJEC	TIV	ES:S	tuden	t will	be ab	le to l	learn									
1. T	o design R	C sla	bs by	using	yield	l line a	analys	sis									
2. T	o design g	rid flo	oors, c	contin	uous	beam	s and	flat sl	abs								
3. T	o design c	himne	eys, si	los ar	nd bur	nkers											
4. T	o learn the	e detai	iling o	of eart	hqual	ke resi	istant	struct	ures a	and to	desig	n eleva	ited wa	ater ta	nks		
COURSE	COUTCO	OME	:Afte	r succ	essfu	l com	pletic	on of t	his co	ourse	the stu	dent w	vill be	able t	o:		
1. Is a	able to des	sign R	RC sla	bs by	using	g yield	l line	analy	sis								
2. Is a	able to des	sign g	rid flo	oors, c	contir	uous	beam	s and	flat s	labs							
3. Is a	able to des	sign c	himne	eys, si	los a	nd bui	nkers										
4. Ha	s learnt a	bout t	he de	tailin	g of e	earthq	uake	resist	ant st	ructui	res and	l is ab	le to d	esign	eleva	ted	wate
tan	ıks																
						UNI											UR
Yield line								c Feat	ures	of Yi	eld Li	nes, D	ifferen	t yiel	d line	pat	tern
virtual wor			-			•											_
Analysis of	f Rectangu	ılar aı	nd cir	cular			· ·	oporte	d on	all foi	ır edge	es and	all edg	ges fix			
						UNI											UR
Design of							app	roxim	ate n	netho	d, De	sign c	of cont	tinuou	is bea	ams	wi
redistributi	on of mor	nents	, Des	ign of													
					I	UNII	-III								12	HO	UR
Design of (•		. a			1	D	1									
Design of S	Silos, Desi	ign of	Squa	re or		<u> </u>		ikers							10		
A (C 1)		1				UNIT		•	1		. ·	• .			12	HO	UR
Art of deta Design of e								sion a	and co	ontrac	tion jo	onts					
REFERE				Jy IIII	ni sia	te me	mou										
				T " D	• •		۲		••								
	n, TY and		<i>,</i>						U		CL.						
	ong, KF an		<i>,</i>		0												
	rghese, "F															hı, 2	2005
	nmia, B.C									Com	prehe	nsive	RCC I	Desigi	1"		
• Bh	avikatti, "			-													
		Мар	ping	of Co	ourse	Outo	ome	s wit	h pro	ogran	nme C)utcor	nes				
Course	POS/C	Р	Р	Р	Р	Р	Р	Р	Р	Р	РО	РО	PS	PS	PS		PS
Course Code	POS/C Os	1 01	1 02	1 03	1 04	1 05	1 06	и О7	1 08	1 09	10	11	01	02	03		04
Couc	U 3																
M18SE10	CO1	3	1	2		2		2	2	1		1	3	1	3	+	2
30			-												_		
	CO2	3		2		2		2	2	1		1	3	1	3		2
	CO3	3		2		2		2	2	1		1	3	1	3		2

M18SE1040]	L	Т	Р	C	Hrs.
Duration: 16weeks	ADVANCED SOLID MECHA	ANICS	L 3	1 1	г 0	4	HIS. 5
Internal Assessment:			-		-		-
Prerequisite: Strength			IIIIu	III 2(<i>J</i> IVI <i>a</i>	115)	
1 0	VES: Student will be able to learn						
	ss and strain at a point						
•	ilibrium and compatibility equations and t	boundary condition	ıs.				
	oblems of elasticity by Airy's stress function		10.				
4. To solve eleme							
COURSE OUTCON	E:After successful completion of this cour	rse the student will	he a	hle t	0.		
	ze stress and strain at a point	ise the student will			0.		
	quilibrium and compatibility equations and	d boundary conditi	ons.				
	2D problems of elasticity by Airy's stress						
4. Is able to solve	elementary 3D problems						
T / 1 / A /	UNIT-I		<u> </u>	<u>, 11 (</u>		2 HC	OURS
	ns, Applications the state of stress at a poin at a point in Cartesian and polar co-ordinate					moti	one
	s in 2-D and 3-D cases in Cartesian Coordinate						ons
-	and Deviatoric stress. Octahedral Stresses.	nates, i interpar su	00000	, and	54105	.5	
	UNIT-II				12	2 HC	OURS
	f strain at a point, Principal strains, Strain I						
	ompatibility equations for strain, maximur	n shear strain, stra	in ro	sette	s, Vo	olum	etric
strain, Octahedral Strain	s. UNIT-III				11) U(OURS
Plane stress and plane s	rain: Airy's stress function approach to 2-l	D problems of elas	ticity	, sin			
of bending of beams,St	• •	b problems of clas	licity	, sin	ipic j	proor	CIIIS
8,	<i>y</i>						
	elasticity in three dimensions, stretching of		y its	own	weig	ght, t	wist
of circular shafts, torsic	n of non-circular sections, membrane analo	ogy.			10		TIDO
Theory of Diosticity	UNIT-IV				12	2 HC	OURS
Theory of Plasticity Stress – strain diagram	n simple tension, perfectly elastic, Rigid – F	Perfectly plastic Li	near	worl	$c = \mathbf{h}$	arder	nina
	Elastic Linear work hardening materials,	effectiv plastic, Li	near	worr	x – na	inder	nng,
	onditions, stress – space representation of	yield criteria through	ugh V	West	ergaa	ard st	tress
space, Tresca and Von-	Mises criteria of yielding.		0		Ū		
Fracture Mechanics							
	e, Quasi brittle materials, Review of concre	ete behaviour in ter	nsion	and	com	nress	sion
	Mechanics – Griffith and Irwin theories		15101	and	com	press	,1011,
REFERENCE BOO	XS						
	Goodier, "Theory of Elasticity", McGraw						
	dvanced Mechanics of Solids, 10th print,	Tata McGraw Hil	ll Pu	blish	ing c	omp	any,
New Delhi, 199	4						

- Sadhu Singh, "Theory of Elasticity", Khanna Publishers
- Verma P.D.S, "Theory of Elasticity", Vikas Publishing Pvt. Ltd
- Chenn W.P and Hendry D.J, "Plasticity for Structural Engineers", Springer Verlag
- Valliappan C, "Continuum Mechanics Fundamentals", Oxford IBH Publishing Co. Ltd.
- Sadhu Singh, "Applied Stress Analysis", Khanna Publishers
- Govindaraju L and Sitharam G, "Applied Elasticity", Interline Publishers
- XiLu, "Theory of Elasticity", John Wiley.

Course Code	POS/C Os	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PS O1	PS O2	PS O3	PS O4
M18SE10	CO1	3	2	2		1			1		1	1	3	3	1	2
40	CO2	3	2	2		1			1		1	1	3	3	1	2
	CO3	3	2	2		1			1		1	1	3	3	1	2
	CO4	3	2	2		1			1		1	1	3	3	1	2

	E1051					Ι	, 1]	P	C	Hrs
Durat	ion: 16weeks	ADV	ANCED STRUC	CTURAL AN	NLYSIS	3	1	(0	4	5
Interna	al Assessment:	50 Marks	Semester End E	Examination	: 50 Marks	(Minin	num	20	Mai	rks)	
Prereq	uisite: Strength	of materials,	Structural analysi	s							
COUI	RSE OBJECTI	IVES:Studen	t will be able to le	arn							
1.	To analyze cur	ved beams for	circumferential a	and radial stre	esses						
2.	•		n beams subjected			ing and	defle	ectic	ons o	of str	aigh
	beams subjected	•	•								
3.	•	ear centre in t	hin walled section	is and tensior	n coefficient	t method	for	he a	anal	ysis (of
4	trusses	the theoretical	concept of been	on alactic fo	undationa						
4. 5.	To understand t	the theoretical	concept of beams	s on elastic ic	Dundations						
	RSE OUTCOM	IE: After succ	essful completion	of this cours	se the stude	nt will b	e abl	e to:			
			ims for circumfere				<i>u</i> 01	<i>c</i> to.	•		
2.	•		esses in beams su			l bendin	g and	1 de	eflec	tion	s of
			nsymmetrical ben		<i>.</i>		0				
3.			cept of the shear c	entre in thin	walled secti	ions and	tensi	on o	coef	ficie	nt
	method for the						_				
4.	Is able to under	stand the cond	cept of the theoret	ical concept	of beams or	elastic	found	latio		110	LID
			UNIT-I							HO	UR
			ferential stress in						bear	ns,	
			s in curved beams	•							
	tions of curved b	eams, Statical	ly indeterminate o	curved beams	s, Closed rin	ig subjec	ted t	o co	once	ntrat	ed
load.											
									10	110	TID
	· · 1D · !		UNIT-II	6.1	1	1. 0				HO	UR
Non sy			Beams: Definition					rica			UR
Non sy nonsyn	nmetrical bendin	g, Bending str	Beams: Definition Beams in beams su	bjected to un	symmetrica	l bendin	g,		ıl an		UR
Non sy nonsyn	nmetrical bendin	g, Bending str	Beams: Definition beams in beams su ed to unsymmetric	bjected to un	symmetrica	l bendin	g,		al an	d	
Non sy nonsyn Deflec	nmetrical bendin tions of straight b	g, Bending str beams subject	Beams: Definition Beasses in beams sured to unsymmetric UNIT-III	bjected to un cal bending, S	symmetrica Sensitivity o	ll bendin of deep I	g, sect	ions	al an 12	d HO	UR
Non sy nonsyn Deflect Shear (nmetrical bendin tions of straight b Centre for Thin-V	g, Bending str peams subject Wall Beam Cr	Beams: Definition esses in beams sured to unsymmetric UNIT-III poss Sections: App	bjected to un cal bending, s roximation e	symmetrica Sensitivity of mployed for	ll bendin of deep I	g, sect	ions n wa	al an 12 all be	d HO eam	UR
Non sy nonsyn Deflec Shear (section	nmetrical bendin tions of straight b Centre for Thin-V s, Shear flow in t	g, Bending str beams subject Wall Beam Cr thin-wall bear	Beams: Definition esses in beams sured to unsymmetrice UNIT-III poss Sections: App n cross sections, S	bjected to un cal bending, S roximation e Shear centre f	symmetrica Sensitivity of mployed for for a channe	ll bendin of deep I r shear in l, I and a	g, section n thin angle	ions n wa	al an 12 all be	d HO eam s.	UR
Non sy nonsyn Deflec Shear (section	nmetrical bendin tions of straight b Centre for Thin-V s, Shear flow in t	g, Bending str beams subject Wall Beam Cr thin-wall bear	Beams: Definition esses in beams sured to unsymmetric UNIT-III poss Sections: App	bjected to un cal bending, S roximation e Shear centre f	symmetrica Sensitivity of mployed for for a channe	ll bendin of deep I r shear in l, I and a	g, section n thin angle	ions n wa	al an 12 all be ction fram	d HO eam s.	OUR cros
Non sy nonsyn Deflec Shear (Section Methoo	nmetrical bendin tions of straight t Centre for Thin-V s, Shear flow in d of Tension Co-	g, Bending str beams subject Wall Beam Cr thin-wall bear Efficient: Ger	Beams: Definition esses in beams sured to unsymmetric UNIT-III oss Sections: App n cross sections, S eral principles, A UNIT-IV	bjected to un cal bending, S roximation e Shear centre f nalysis of thr	symmetrica Sensitivity of mployed fo for a channe ree-dimensio	I bendin of deep I r shear in I, I and a onal trus	g, sect n thin angle ses a	ions n wa sec nd f	al an 12 all be tion fram 12	d HO eam s. les HO	OUR cros
Non sy nonsyn Deflect Shear (section Methoo Beams	nmetrical bendin tions of straight b Centre for Thin-V s, Shear flow in d of Tension Co- on Elastic Found	g, Bending str beams subject Wall Beam Cr thin-wall bear Efficient: Ger dations: Gener	Beams: Definition esses in beams sured to unsymmetric UNIT-III coss Sections: App n cross sections, S eral principles, A	bjected to un cal bending, S roximation e Shear centre f nalysis of thr beam subjec	symmetrica Sensitivity of mployed fo for a channe ree-dimensio	I bendin of deep I r shear in I, I and a onal trus	g, sect n thin angle ses a	ions n wa sec nd f	al an 12 all be tion fram 12	d HO eam s. les HO	OUR cros
Non sy nonsyn Deflect Shear (Section Methoo Beams conditi	nmetrical bendin tions of straight b Centre for Thin-V s, Shear flow in d of Tension Co- on Elastic Found ons, Infinite bear	g, Bending str peams subject Wall Beam Cr thin-wall bear Efficient: Ger dations: Gener m subjected to	Beams: Definition esses in beams sured to unsymmetric UNIT-III coss Sections: App in cross sections, S eral principles, A UNIT-IV ral theory, Infinite	bjected to un cal bending, S roximation e Shear centre f nalysis of thr beam subject d segment,	symmetrica Sensitivity of mployed fo for a channe ree-dimensio	I bendin of deep I r shear in I, I and a onal trus	g, sect n thin angle ses a load	ions n wa sec nd f , Bo	al an 12 all be tion fram 12 ound	d HO eam s. es HO ary	
Non syn Deflect Shear (Section Methoo Beams conditi Semi-in beams.	nmetrical bendin tions of straight b Centre for Thin-V s, Shear flow in t d of Tension Co- on Elastic Found ons, Infinite bean nfinite beam subj	g, Bending str beams subject Wall Beam Cr thin-wall bear Efficient: Ger dations: Gener m subjected to jected to loads	Beams: Definition esses in beams sured to unsymmetric UNIT-III coss Sections: App in cross sections, S eral principles, A UNIT-IV ral theory, Infinite o a distributed load	bjected to un cal bending, S roximation e Shear centre f nalysis of thr beam subject d segment,	symmetrica Sensitivity of mployed fo for a channe ree-dimensio	I bendin of deep I r shear in I, I and a onal trus	g, sect n thin angle ses a load	ions n wa sec nd f , Bo	al an 12 all be tion fram 12 ound	d HO eam s. es HO ary	
Non syn Deflect Shear (Section Methoo Beams conditi Semi-in beams.	nmetrical bendin tions of straight t Centre for Thin-V s, Shear flow in d of Tension Co- on Elastic Found ons, Infinite bean nfinite beam subj	g, Bending str beams subject Wall Beam Cr thin-wall bear Efficient: Ger dations: Gener m subjected to jected to loads	Beams: Definition esses in beams sured to unsymmetric UNIT-III coss Sections: App in cross sections, S eral principles, A UNIT-IV ral theory, Infinite o a distributed load	bjected to un cal bending, S roximation e Shear centre f nalysis of thr beam subject d segment,	symmetrica Sensitivity of mployed fo for a channe ree-dimensio	I bendin of deep I r shear in I, I and a onal trus	g, sect n thin angle ses a load	ions n wa sec nd f , Bo	al an 12 all be tion fram 12 ound	d HO eam s. es HO ary	
Non sy nonsyn Deflect Shear (Section Methoo Beams conditi Semi-it beams. REFE	nmetrical bendin tions of straight b Centre for Thin-V s, Shear flow in d of Tension Co- on Elastic Found ons, Infinite beam nfinite beam subj	g, Bending str beams subject Wall Beam Cr thin-wall bear Efficient: Ger dations: Gener m subjected to jected to loads	Beams: Definition esses in beams sured to unsymmetric UNIT-III coss Sections: App in cross sections, S eral principles, A UNIT-IV ral theory, Infinite o a distributed load	bjected to un cal bending, S roximation e Shear centre f nalysis of thr beam subjec d segment, infinite beam	symmetrica Sensitivity of mployed fo for a channe ree-dimensio eted to conce with conce	I bendin of deep I r shear in I, I and a onal trus entrated ntrated I	g, sect n thin angle ses a load	ions n wa sec nd f , Bo	12 12 11 be tion fram 12 ound	d HO eam s. es HO ary end,	UR cros
Non sy nonsyn Deflect Shear (Section Methoo Beams conditi Semi-it beams. REFE	nmetrical bendin tions of straight b Centre for Thin-V s, Shear flow in d of Tension Co- on Elastic Found ons, Infinite beam nfinite beam subj	g, Bending str beams subject Wall Beam Cr thin-wall bear Efficient: Ger dations: Gener m subjected to jected to loads KS d Sidebottom,	Beams: Definition esses in beams sured to unsymmetric UNIT-III coss Sections: App in cross sections, S leral principles, A UNIT-IV cal theory, Infinite of a distributed load at its end, Semi-i	bjected to un cal bending, S roximation e Shear centre f nalysis of thr beam subjec d segment, infinite beam	symmetrica Sensitivity of mployed fo for a channe ree-dimensio eted to conce with conce	I bendin of deep I r shear in I, I and a onal trus entrated ntrated I	g, sect n thin angle ses a load	ions n wa sec nd f , Bo	12 12 11 be tion fram 12 ound	d HO eam s. es HO ary end,	UR cros
Non sy nonsyn Deflect Shear (Section Methoo Beams conditi Semi-it beams. REFE	Centre for Thin-V Centre for Thin-V s, Shear flow in d of Tension Co- on Elastic Found ons, Infinite beam nfinite beam subj RENCE BOO Boresi, A.P. and Wiley and Sons	g, Bending str peams subject Wall Beam Cr thin-wall bear Efficient: Ger dations: Gener m subjected to jected to loads KS d Sidebottom, s, New York.	Beams: Definition esses in beams sured to unsymmetric UNIT-III coss Sections: App in cross sections, S leral principles, A UNIT-IV cal theory, Infinite of a distributed load at its end, Semi-i	bjected to un cal bending, S roximation e Shear centre f nalysis of thr beam subject d segment, infinite beam vanced Mech	symmetrica Sensitivity of mployed fo for a channe ee-dimensio eted to conce with conce manics of Ma	I bendin of deep I r shear in l, I and a onal trus entrated ntrated I aterials,	g, sect n thin ungle ses a load n load	ions n wa sec nd f , Bo near	1 an 12 11 be tion fram 12 ound tits o	d HO eam s. es HO ary end,	OUR cros
Non sy nonsyn Deflect Shear (Section Method Beams conditi Semi-it beams. REFE 1.	Centre for Thin-V Centre for Thin-V s, Shear flow in d of Tension Co- on Elastic Found ons, Infinite beam nfinite beam subj RENCE BOO Boresi, A.P. and Wiley and Sons	g, Bending str peams subject Wall Beam Cr thin-wall bear Efficient: Ger dations: Gener m subjected to jected to loads KS d Sidebottom, s, New York.	Beams: Definition esses in beams sured to unsymmetric UNIT-III coss Sections: App in cross sections, S eral principles, A UNIT-IV ral theory, Infinite a distributed load at its end, Semi-i O.M. (1985), Ad	bjected to un cal bending, S roximation e Shear centre f nalysis of thr beam subject d segment, infinite beam vanced Mech	symmetrica Sensitivity of mployed fo for a channe ee-dimensio eted to conce with conce manics of Ma	I bendin of deep I r shear in l, I and a onal trus entrated ntrated I aterials,	g, sect n thin ungle ses a load n load	ions n wa sec nd f , Bo near	1 an 12 11 be tion fram 12 ound tits o	d HO eam s. es HO ary end,	OUR cros
Non sy nonsyn Deflect Shear (section Method Beams conditi Semi-it beams. REFE 1. 2.	nmetrical bendin tions of straight b Centre for Thin-V s, Shear flow in d of Tension Co- on Elastic Found ons, Infinite beam nfinite beam subj RENCE BOO Boresi, A.P. an Wiley and Sons Junnarkar, S.B.	g, Bending str beams subject Wall Beam Cr thin-wall bear Efficient: Ger dations: Gener m subjected to jected to loads KS d Sidebottom, s, New York. and Shah, H.	Beams: Definition esses in beams sured to unsymmetric UNIT-III coss Sections: App in cross sections, S eral principles, A UNIT-IV ral theory, Infinite a distributed load at its end, Semi-i O.M. (1985), Ad	bjected to un cal bending, S roximation e Shear centre f nalysis of thr beam subject d segment, infinite beam vanced Mech	symmetrica Sensitivity of mployed fo for a channe ee-dimensio eted to conce with conce manics of Ma	I bendin of deep I r shear in l, I and a onal trus entrated ntrated I aterials,	g, sect n thin ungle ses a load n load	ions n wa sec nd f , Bo near	1 an 12 11 be tion fram 12 ound tits o	d HO eam s. es HO ary end,	UR cros
Non sy nonsyn Deflect Shear (section Method Beams conditi Semi-it beams. REFE 1. 2.	nmetrical bendin tions of straight b Centre for Thin-V s, Shear flow in d of Tension Co- on Elastic Found ons, Infinite beam nfinite beam subj RENCE BOO Boresi, A.P. and Wiley and Sons Junnarkar, S.B. House, Anand Reference Bool	g, Bending str beams subject Wall Beam Cr thin-wall bear Efficient: Ger dations: Gener m subjected to jected to loads KS d Sidebottom, s, New York. and Shah, H.	Beams: Definition esses in beams sured to unsymmetric UNIT-III coss Sections: App in cross sections, S eral principles, A UNIT-IV ral theory, Infinite a distributed load at its end, Semi-i O.M. (1985), Ad	bjected to un cal bending, S roximation e Shear centre f nalysis of thr beam subjec d segment, infinite beam vanced Mech nics of Structu	symmetrica Sensitivity of mployed for for a channe ree-dimension eted to conce with conce manics of Ma ures, Vol. II	I bendin of deep I r shear in l, I and a onal trus entrated ntrated I aterials, I, Charo	g, sect n thin ungle ses a load load Four tar P	ions i wa sec nd f , Bo near th E ubli	al an 12 11 be tion fram 12 ound tits of ditic	d HO eam s. es HO ary end, on, Jo	UR cross UR Sho ohn Cha
Non sy nonsyn Deflect Shear (section Method Beams conditi Semi-in beams. REFE 1. 2. 1.	nmetrical bendin tions of straight b Centre for Thin-V s, Shear flow in d of Tension Co- on Elastic Found ons, Infinite beam nfinite beam subj RENCE BOO Boresi, A.P. and Wiley and Sons Junnarkar, S.B. House, Anand Reference Bool	g, Bending str beams subject Wall Beam Cr thin-wall bear Efficient: Ger dations: Gener m subjected to jected to loads KS d Sidebottom, s, New York. and Shah, H. ks: I Timoshenko,	Beams: Definition esses in beams sur- ed to unsymmetric UNIT-III coss Sections: App in cross sections; App in cross sections, S iteral principles, A UNIT-IV ral theory, Infinite in a distributed load is at its end, Semi- o A. (1985), Ad U. (1996), Mechan	bjected to un cal bending, S roximation e Shear centre f nalysis of thr beam subjec d segment, infinite beam vanced Mech nics of Structu	symmetrica Sensitivity of mployed for for a channe ree-dimension eted to conce with conce manics of Ma ures, Vol. II	I bendin of deep I r shear in l, I and a onal trus entrated ntrated I aterials, I, Charo	g, sect n thin mgle ses a load load Four tar P	ions i wa sec nd f , Bo near th E ubli	al an 12 11 be tion fram 12 ound tits of ditic	d HO eam s. es HO ary end, on, Jo	UR cross UR Sho ohn Cha
Non sy nonsyn Deflect Shear (Section Method Beams conditi Semi-it beams. REFE 1. 2. 1. 1.	Centre for Thin-V centre for Thin-V s, Shear flow in d of Tension Co- on Elastic Found ons, Infinite beam nfinite beam subj RENCE BOO Boresi, A.P. and Wiley and Sons Junnarkar, S.B. House, Anand Reference Bool Gere, G.M. and Publishers, New	g, Bending str peams subject Wall Beam Cr thin-wall bear Efficient: Ger dations: Gener m subjected to jected to loads KS d Sidebottom, s, New York. and Shah, H. ks: l Timoshenko, w Delhi.	Beams: Definition esses in beams sur- ed to unsymmetric UNIT-III coss Sections: App in cross sections; App in cross sections, S iteral principles, A UNIT-IV ral theory, Infinite in a distributed load is at its end, Semi- o A. (1985), Ad U. (1996), Mechan	bjected to un cal bending, S roximation e Shear centre f nalysis of thr beam subject d segment, infinite beam vanced Mechanics of Structu	symmetrica Sensitivity of mployed fo for a channe ee-dimensio eted to conce with conce manics of Ma ures, Vol. II	I bendin of deep I r shear in l, I and a onal trus entrated I aterials, I, Charo terials, S	g, sect n thin ungle ses a load load Four tar P	ions n wa sec nd f , Bo near th E ubli	1 an 12 11 be tion fram 12 ound tits of ditio	d HO eam s. ees HO ary end, on, Jo ons,	UR cross DUR Sho ohn Cha

Course Code	POS/C Os	P 01	P O2	Р О3	P 04	Р О5	P 06	Р 07	Р 08	P 09	PO 10	PO 11	PS O1	PS O2	PS 03	PS O4
M18SE1	CO1	3	2	2		2			1	1		1	3	3	1	2
051	CO2	3	2	2		2			1	1		1	3	3	1	2
	CO3	3	2	2		2			1	1		1	3	3	1	2
	CO4	3	2	2		2			1	1		1	3	3	1	2

M18SE1052				L	Т	Р	С	Hrs.
Duration: 16weeks		DESIGN OF BRIDO	GES	3	1	0	4	5
Internal Assessment:	50 Marks	Semester End Examina	tion: 50 Marks (Mir	nimu	m 20) Ma	rks)	
Prerequisite: Design of	of RC Structur	al Elements, Design of Pre	estressed Concrete Str	uctur	es			
COURSE OB IECT	IVFS• Stude	ent will be able to learn						
		elopments, site selection for	or bridges					
		culvert and design of T be						
	•	loading cases and to design						
4. To design T- beam	bridge slab							
COURSE OUTCOM	ЛF•							
		is course the student wil	l be able to:					
	-	evelopments, site selection						
		n, components and forces a						
		C loading cases and to desi						
4. Is able to design T-	- beam bridge	slab						
		UNIT-I				1/		UDC
Introduction, Historia	1 Davalonma	ents, Site Selection for Bi	ridges Classification	of I	Prida			URS
		C Class AA Tracked, Whe	0		•			
and Wing walls				uiing	, 1100	attine.	1105, 1	1015
C C								
Design of a slab culver	t for Class AA	A tracked and Class A when	eled loading			<u>т.</u>		~
		UNIT-II						URS
Box Culvert: Working structural design of sla		combination of loading, m	oment distribution, ca	lcula	t10n	ot B	M &	SF,
structural design of sta		remiorcement details.						
T Beam Bridge Slab De	esign: Proport	ioning of Components Ana	alysis of interior Slab	& Ca	ntilev	ver S	labU	sing
IRC Class AA Tracked	l, Wheeled Cl	ass A Loading, Structural I	Design of Slab, with R	einfo	orcen	1		
		UNIT-III						URS
		: Analysis of Cross Girder						
AA ITacked, wheeled	Class A Load	ing A Loads, Structural De	esign of deam, with K	enno	rcen	lent I	Detai	1.
T Beam Bridge Main (Girder Design	: Analysis of Main Girder	for Dead Load & Live	e Loa	d Us	ing I	RCC	Class
AA Tracked, Wheeled	l Class A Lo	ading Using COURBON'	S Method, Analysis	of M	lain	Gird	er U	sing
		LITTLE Method for IRC C		icleo	nly,	BM	& SI	F for
different loads, Structu	ral Design of	Main Girder With Reinford	cement Details					TIDG
D (Q D 11 T 1		UNIT-IV		~				URS
0		e and Post Tensioning			-			alysis
		vsis of main girder using ressing force, cable profile						
and detailing of main g	-	ressing ioree, cable profile			DUSI	511 01		OIUCK
0 0								
Polonood Contilovor	Bridge Int	roduction and proportion	ning of components	s, D	esigr	n of	sir	nply
	-			í.	U	1 01		
supportedportion and d	lesign of canti	lever portion, design of art		·				
supportedportion and d REFERENCE BOC	lesign of canti KS	lever portion, design of art	iculation.					
supportedportion and d REFERENCE BOO 1. "Essentials of Brid	lesign of canti DKS dge Engineer		iculation. xford & IBH Publishi	ng C				

- 3. "Principles and Practice of Bridge Engineering"- S P Bindra Dhanpat Rai & Sons New Delhi
- 4. IRC 6 1966 "Standard Specifications And Code Of Practice For Road Bridges"- Section II Loads and Stresses, The Indian Road Congress New Delhi
- 5. IRC 21 1966 "Standard Specifications And Code Of Practice For Road Bridges"-Section III Cement Concrete (Plain and reinforced) The Indian Road Congress New Delhi
- 6. IS 456 2000 "Indian Standard Plain and Reinforced Concrete Code of Practice"- (Fourth Revision) BIS New Delhi
- 7. IS 1343 "Indian Standard Prestressed Concrete Code of Practice"- BIS New Delhi
- 8. Raina V.K., "Concrete Bridge Practice"- Tata McGraw Hill
- 9. Bakht B & Jaeggar, "Bridge Analysis Simplified"- McGraw Hill
- 10. Ponnuswamy . S, "Bridge Engineering"- Tata McGraw Hill.

Course Code	POS/C Os	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PSO 1	PSO 2	PSO 3	PSO 4
M18SE10	CO1	3	1	2		2		2	2	1		1	3	1	3	2
52	CO2	3		2		2		2	2	1		1	3	1	3	2
	CO3	3		2		2		2	2	1		1	3	1	3	2
	CO4	3		2		2		2	2	1		1	3	1	3	2

M18SE1061							L	Τ	P	С	Hrs
Duration: 16weeks		SPECIA	AL CON	CRETES	5		3	1	0	4	5
Internal Assessment:	50 Marks	Semester	End Exa	mination	n: 50 M	larks (Mi	inimu	m 20) Ma	rks)	
Prerequisite: Concrete	e Technology										
COURSE OBJECT	WEG. Stud	nt will be	abla ta la	0.000							
					1 J T	inlet eresio	1.4		_		
To learn the difTo learn about					is and L	light weig	gin coi	icrete	5		
 To learn about 											
• To learn about			-	-	of conc	rete					
	0 1										
COURSE OUTCON	AE:										
After successful com	pletion of th	is course th	he studer	nt will be	e able to	D:					
• Has learnt the c	• •		.		ials and	Light we	ight c	oncre	ete		
Has learnt abou	÷	•									
Has learnt abou				• •							
Has learnt abou	it High perior	mance conc UNI		other type	es of col	ncrete.			12	но	I ID.
Introduction to concret				finance	f	ution of a	~ ~ ~ ~ ~				
Aggregates classification	ts and cement on and proper Concrete: Prin	t replacement ies, artificia iciples and provide the second	ent materia al and recy methods	ycled aggi of mix de	olona, f regates, esign, v	ly ash, sil chemical ariables i	ica fu and m n proj	ime, i ninera portic	rice l al adı oning	nusk nixtu , exp	ash, ires. oosu
Development in cemen Aggregates classification Mix proportioning of C conditions, and procedu of conventional concrete Microstructure of conc	ts and cement on and proper Concrete: Print are of mix des tes, Self-Com	t replacement ies, artificia iciples and in ign as per re- pacting cond	ent materia al and recy methods elevant coo crete and	als, pozzo ycled aggr of mix do dal provis Geopolyr	olona, f regates, esign, v sions an mer con	ly ash, sil chemical ariables i d numeric crete	ica fu and m n prop cal exa	me, m ninera porticample	rice h al adu oning es of h	nusk nixtu , exp mix c	ash, ires. oosu lesig
Aggregates classification Mix proportioning of C conditions, and procedu	ts and cement on and proper Concrete: Print are of mix des tes, Self-Com	t replacement ies, artificia iciples and in ign as per re- pacting cond	ent materia al and recy methods elevant coo crete and	als, pozzo ycled aggr of mix do dal provis Geopolyr	olona, f regates, esign, v sions an mer con	ly ash, sil chemical ariables i d numeric crete	ica fu and m n prop cal exa	me, m ninera porticample	rice h al adu oning es of h	nusk nixtu , exp mix c	ash, ires. oosu lesig
Aggregates classification Mix proportioning of C conditions, and procedure of conventional concrete Microstructure of conc	ts and cement on and proper Concrete: Print are of mix des tes, Self-Com	t replacement ies, artificia iciples and in ign as per re- pacting cond	ent materia al and recy methods o elevant coo crete and n zone ar	als, pozzo ycled aggr of mix do dal provis Geopolyr	olona, f regates, esign, v sions an mer con	ly ash, sil chemical ariables i d numeric crete	ica fu and m n prop cal exa	me, m ninera porticample	rice h al adu oning es of h ano n	nusk nixtu , exp mix c	ash, ires. oosu lesig ials,
Aggregates classification Mix proportioning of C conditions, and procedu of conventional concrete Microstructure of conc	ts and cement on and proper Concrete: Prin tre of mix des tes, Self-Com crete, interfac	t replacement ies, artificia iciples and m ign as per re- pacting cond ial transition UNIT	methods methods elevant coo crete and n zone ar	als, pozzo ycled aggr of mix do dal provis Geopolyn nd its sig	olona, f regates, esign, v sions an mer con nificanc	ly ash, sil chemical ariables i d numeric crete xe, applica	ica fu and m n prop cal exa ation	me,	rice hal add oning es of hand n	nusk nixtu , exp mix c nater 2HO	ash, ires. oosu lesig ials, UR
Aggregates classification Mix proportioning of C conditions, and procedur of conventional concrete Microstructure of conce durability of concrete.	ts and cement on and proper Concrete: Print re of mix des tes, Self-Com erete, interfac Introduction, e: Radiation	t replacement ies, artificia iciples and m ign as per re- pacting cond tal transition UNIT classification shielding a	ent materia al and recy methods clevant coo crete and n zone ar <u>F-II</u> on, proper	als, pozzo ycled aggr of mix do dal provis Geopolyn nd its sig rties, stren	olona, f regates, esign, v sions an mer con nificanc ngth anc e, mate	ly ash, sil chemical ariables i d numeric crete e, applica d durabilit rials for	ica fu and m n prop cal exa ation	me,	rice hal adu oning es of h uno n 12 portio	nusk nixtu , exp mix c nater 2 HO	ash, nres. posu lesig ials, UR gand
Aggregates classification Mix proportioning of C conditions, and procedur of conventional concrete Microstructure of conce durability of concrete. Light Weight concrete: problems. High density concrete mixproportioning, prop Ferrocement: Ferrocem in tension, compression	ts and cement on and proper Concrete: Print are of mix des tes, Self-Com- crete, interfac Introduction, e: Radiation perties in fresh- tent materials	t replacement ies, artificia iciples and minimized pacting condition al transition UNIT classification shielding a and harden mechanical	ent materia al and recy methods elevant coo crete and n zone ar F-II on, proper ability of ned state, p l propertie	als, pozzo ycled aggr of mix do dal provis Geopolyn nd its sig rties, stren concrete placemen es, cracki	olona, f regates, esign, v sions an mer con nificanc ngth and e, mate t metho ng of fe	ly ash, sil chemical ariables i d numeric crete ee, applica d durabilit rials for ds.	ica fu and m n prop cal exa ation y, mix high	me,	rice h al adu oning es of h uno n 12 portionsity of andb	nusk nixtu , exp mix c nater 2HO Doning concr ehav	ash, nres. oosu lesiş ials, UR gand rete,
Aggregates classification Mix proportioning of C conditions, and procedur of conventional concrete Microstructure of conce durability of concrete. Light Weight concrete: problems. High density concrete mixproportioning, prop Ferrocement: Ferrocem	ts and cement on and proper Concrete: Print are of mix des tes, Self-Com- crete, interfac Introduction, e: Radiation perties in fresh- tent materials	t replacement ies, artificia iciples and minimized pacting condition al transition UNIT classification shielding a and harden mechanical	ent materia al and recy methods of elevant coor crete and n zone ar F-II on, proper ability of hed state, p l propertice	als, pozzo ycled aggr of mix do dal provis Geopolyn nd its sig rties, stren concrete placemen es, cracki	olona, f regates, esign, v sions an mer con nificanc ngth and e, mate t metho ng of fe	ly ash, sil chemical ariables i d numeric crete ee, applica d durabilit rials for ds.	ica fu and m n prop cal exa ation y, mix high	me,	rice hal adu oning es of h uno n 12 portionsity of andb ns, du	nusk nixtu , exp mix c nater 2HO Doning concr ehav	ash, ires. bosu lesig ials, UR gand rete, iour lity,
Aggregates classification Mix proportioning of C conditions, and procedur of conventional concrete Microstructure of conce durability of concrete. Light Weight concrete: problems. High density concrete mixproportioning, prop Ferrocement: Ferrocement in tension, compression and applications.	ts and cement on and proper Concrete: Print re of mix des tes, Self-Com- crete, interfac Introduction, e: Radiation perties in fresh and flexure, rete: Fibre m	t replacement ies, artificial aciples and median pacting condition al transition UNIT classification shielding a and harden mechanical Design of fer UNIT aterials – t	ent materia al and recy methods of elevant coo crete and n zone ar F-II on, proper ability of hed state, p l propertid errocemer C-III types and	als, pozzo ycled aggr of mix do dal provis Geopolyn nd its sig rties, stren concrete placemen es, cracki nt in tensi	olona, f regates, esign, v sions an mer con nificanc ngth and e, mate t metho ng of fe on, ferr	ly ash, sil chemical ariables i d numeric crete e, applica l durabilit rials for ds. errocement	ica fu and m n prop cal exa ation y, mix high t, stre constr	me,	rice hal adu oning es of h uno n 12 portionsity of andb ns, du 12	nusk nixtu , exp mix c nater 2HO Doning concr ehav urabi 2HO	ash, ires. bosu lesig ials, UR gand rete, iour lity, UR
Aggregates classification Mix proportioning of C conditions, and procedur of conventional concrete Microstructure of conce durability of concrete. Light Weight concrete: problems. High density concrete mixproportioning, prop Ferrocement: Ferrocem in tension, compression	ts and cement on and proper Concrete: Print re of mix des tes, Self-Com- erete, interfac Introduction, e: Radiation perties in fresh and flexure, rete: Fibre mond, properti- r in tension, o	t replacement ies, artificia iciples and meta- pacting condi- ial transition UNIT classification shielding a and harden mechanical Design of fer UNIT aterials – t es in fresh st compression ing mechanis	ent materia al and recy methods of elevant coo crete and n zone ar F-II on, proper ability of hed state, p l propertic errocemer C-III types and tate. n and flex sm, applic	als, pozzo ycled aggr of mix do dal provis Geopolyn nd its sig rties, stren concrete placemen es, cracki nt in tensi	olona, f regates, esign, v sions an mer con nificance ngth ance t metho ng of fe on, ferr	ly ash, sil chemical ariables i d numeric crete e, applica d durabilit rials for ds. errocement ocement of c proport	ica fu and m n prop cal exa ation y, mix high t, stre constr	me,	rice hal adu oning oning on n on n 12 portion sity of andb ns, du 12 otribu	nusk nixtu nixtu nater 2HO Doning concu ehav urabi 2HO tion	ash, ires. posudesig ials, UR gand rete, iour lity, UR and ical
Aggregates classification Mix proportioning of C conditions, and procedur of conventional concrete Microstructure of conce durability of concrete. Light Weight concrete: problems. High density concrete mixproportioning, prop Ferrocement: Ferrocement in tension, compression and applications. Fibre reinforced concer- orientation, interfacial I Strength and behaviour	ts and cement on and proper Concrete: Print re of mix des tes, Self-Com- erete, interfac Introduction, e: Radiation perties in fresh and flexure, rete: Fibre m bond,properti r in tension, of and tougheni	t replacement ies, artificia aciples and metagenession ign as per re- pacting cond ial transition UNIT classification shielding a and harden mechanical Design of fer UNIT aterials – t es in fresh st compression ng mechanis UNIT	ent materia al and recy methods of elevant coo crete and n zone ar F-II on, proper ability of hed state, p l propertid errocemer C-III types and tate. n and flex sm, applic C-IV	als, pozzo ycled aggr of mix do dal provis Geopolyn nd its sig rties, stren concrete placemen es, cracki nt in tensi	olona, f regates, esign, v sions an mer con nificance ngth ance e, mate t metho ng of fe on, ferr	ly ash, sil chemical ariables i d numeric crete e, applica d durabilit rials for ds. errocement c proport e reinforc	ica fu and m n prop cal exa ation y, mix high t, stre constr ioning ed con	me,	rice hal adu oning oning es of the uno magnetic portions, du andb ns, du 12 otribu e, magnetic 12	nusk nixtu nixtu nater 2HO Doning conce ehav urabi 2HO tion	ash, ires. bosu lesig ials, UR and ical UR UR UR

Ready Mixed Concrete – manufacture, transporting, placing and precautions, Self-Compacting Concrete, Self-Curing Concrete, Reactive powder concrete, Roller compacted concrete, Bacterial Concrete, Porous concrete.

REFERENCE BOOKS

- 1. Neville A.M, "Properties of Concrete" Pearson Education Asis, 2000
- 2. P. Kumar Mehta, Paul J.N.Monterio, CONCRETE, "Microstructure, Properties and Materials"-Tata McGraw Hill
- 3. A.R.Santhakumar, (2007) "Concrete Technology"-Oxford University Press, New Delhi, 2007.
- 4. Short A and Kinniburgh.W, "Light Weight Concrete"- Asia Publishing House, 1963
- 5. Aitcin P.C. "High performance concrete"-E and FN, Spon London 1998
- 6. Rixom.R. and Mailvaganam.N., "Chemical admixtures in concrete"- E and FN, Spon London 1999

Course Code	POS/C Os	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PS O1	PS O2	PS O3	PS O4
M18SE10	CO1	2	1		2	1	2	1	2		1	1	2	1	1	2
61	CO2	2	1		2	1	2	1	2		1	1	2	1	1	2
	CO3	2			2	1	2	1	2		1	1	2	1	1	2
	CO4	2			2	1	2	1	2		1	1	2	1	1	2

Mapping of Course Outcomes with programme Outcomes

M18SE1062	DESIGN OF TALL STRUCTURES	L	Τ	P	С	Hrs.
Duration: 16weeks		3	1	0	4	5
Internal Assessment:	50 Marks Semester End Examination: 50 Marks (Mi	nimu	ım 20) Ma	ırks)	
Prerequisite: Analysis	s and Design of RCC and Steel Structures					
COURSE OBJECT	IVES: Student will be able to learn					
	arious systems of tall buildings.					
	different types of loads, materials and design philosophy. and systems with their behaviour are introduced.					
	wledge about static, dynamic and stability analysis of various	syste	ms.			
COURSE OUTCON	AE:					
After successful com	pletion of this course the student will be able to:					
1. Develop variou	is systems of tall buildings.					
	ferent types of loads, materials for the design of tall structures	s.				
	behaviour of structural members.					
4. Design stable s	tructures.					
	UNIT-I			12	2HO	URS
INTRODUCTION						
Design Philosophy - H	listory - Classification of buildings according to NBC – Wi	nd lo	1	a •	mic	أدما
2 toight i mosophij i i	istory clussification of canaligs according to 1020 11	nu io	ad –	Seis	inic .	load
Quasi static approach-		nu io	ad –	Seis		10a0
Quasi static approach- LOADS AND MATE Wind loading:static and loading: Equivalent late	combination of loading UNIT-II	ation	meth	1 2 nod. 1	2HO Earth	URS quak
Quasi static approach- LOADS AND MATE Wind loading:static and loading: Equivalent late design, Plastic design.	combination of loading UNIT-II RIALS d dynamic approach, Analytical and wind tunnel experiment	ation stres	meth s des	12 nod. I sign,	2HO Earth Limi	URS quak
Quasi static approach- LOADS AND MATE Wind loading:static and loading: Equivalent late design, Plastic design.	Combination of loading UNIT-II RIALS d dynamic approach, Analytical and wind tunnel experiment eral force, modal analysis, combinations of loading, working	ation stres	meth s des	12 nod. I sign, mixe	2HO Earth Limi	URS quak t stat
Quasi static approach- LOADS AND MATE Wind loading:static and loading: Equivalent late design, Plastic design.	combination of loading UNIT-II RIALS d dynamic approach, Analytical and wind tunnel experiments eral force, modal analysis, combinations of loading, working mance concrete, fiber reinforced concrete, lightweight concrete UNIT-III	ation stres	meth s des	12 nod. I sign, mixe	2HO Earth Limi	URS quak t stat
Quasi static approach- LOADS AND MATE Wind loading:static and loading: Equivalent late design, Plastic design. Materials – high perfor STRUCTURAL SYST	combination of loading UNIT-II RIALS d dynamic approach, Analytical and wind tunnel experiments eral force, modal analysis, combinations of loading, working mance concrete, fiber reinforced concrete, lightweight concrete UNIT-III	ation stres ete, de	meth s des esign	12 nod. I sign, mixe 12	2HO Earth Limi es 2HO	URS quak t stat
Quasi static approach- LOADS AND MATE Wind loading:static and loading: Equivalent late design, Plastic design. Materials – high perfor STRUCTURAL SYST Behaviour of High Rise	Combination of loading UNIT-II RIALS d dynamic approach, Analytical and wind tunnel experiment eral force, modal analysis, combinations of loading, working mance concrete, fiber reinforced concrete, lightweight concrete UNIT-III TEMS	ation stres ete, de	meth s des esign	$\frac{12}{10000000000000000000000000000000000$	2HO Earth Limi es 2HO éertic	URS quak t stat
Quasi static approach- LOADS AND MATE Wind loading:static and loading: Equivalent late design, Plastic design. Materials – high perfor STRUCTURAL SYST Behaviour of High Rise horizontal load resistan	combination of loading UNIT-II RIALS d dynamic approach, Analytical and wind tunnel experiment eral force, modal analysis, combinations of loading, working mance concrete, fiber reinforced concrete, lightweight concrete UNIT-III TEMS e structures - Different system for load distribution in steel and at systems - Rigid frames - braced frames - infilled frames - stager braced systems - Mega systems.	ation stres ete, de	meth s des esign	$\frac{12}{10000000000000000000000000000000000$	2HO Earth Limi es 2HO éertic	URS quak t stat
Quasi static approach- LOADS AND MATE Wind loading:static and loading: Equivalent late design, Plastic design. Materials – high perfor STRUCTURAL SYST Behaviour of High Rise horizontal load resistan	Combination of loading UNIT-II RIALS d dynamic approach, Analytical and wind tunnel experiment. eral force, modal analysis, combinations of loading, working mance concrete, fiber reinforced concrete, lightweight concrete UNIT-III TEMS e structures - Different system for load distribution in steel and the systems - Rigid frames - braced frames - infilled frames - structures -	ation stres ete, de	meth s des esign	12 nod. I sign, 12 e - V s - wa	2HO Earth Limi es 2HO dertic	URS quak t stat
Quasi static approach- LOADS AND MATE Wind loading:static and loading: Equivalent late design, Plastic design. Materials – high perfor STRUCTURAL SYST Behaviour of High Rise horizontal load resistan	combination of loading UNIT-II RIALS d dynamic approach, Analytical and wind tunnel experiment erail force, modal analysis, combinations of loading, working mance concrete, fiber reinforced concrete, lightweight concrete UNIT-III TEMS e structures - Different system for load distribution in steel and at systems - Rigid frames - braced frames - infilled frames - stager braced systems - Mega systems. UNIT-IV	ation stres ete, de	meth s des esign	12 nod. I sign, 12 e - V s - wa	2HO Earth Limi es 2HO dertic	URS quak t stat
Quasi static approach- LOADS AND MATE Wind loading:static and loading: Equivalent late design, Plastic design. Materials – high perfor STRUCTURAL SYST Behaviour of High Rise horizontal load resistan tubular systems - outrig ANALYSIS AND DES Analysis and Design pr	combination of loading UNIT-II RIALS d dynamic approach, Analytical and wind tunnel experiment eral force, modal analysis, combinations of loading, working mance concrete, fiber reinforced concrete, lightweight concrete UNIT-III TEMS e structures - Different system for load distribution in steel and it systems - Rigid frames - braced frames - infilled frames - stager braced systems - Mega systems. UNIT-IV SIGN inciples of various horizontal load transfer systems - approximation	ation stres ete, de nd co hear	meth s des esign ncret walls	12 nod. I sign, mixe 12 e - V s - wa 12 ods -	Earth Limi 22HO 22HO 22HO 22HO	UR: quak t star UR: al an annes UR: Lellin
Quasi static approach- LOADS AND MATE Wind loading:static and loading: Equivalent late design, Plastic design. Materials – high perfor STRUCTURAL SYST Behaviour of High Rise horizontal load resistant tubular systems - outrig ANALYSIS AND DES Analysis and Design pr for accurate analysis - 3	combination of loading UNIT-II RIALS d dynamic approach, Analytical and wind tunnel experiment eral force, modal analysis, combinations of loading, working mance concrete, fiber reinforced concrete, lightweight concrete UNIT-III TEMS e structures - Different system for load distribution in steel and t systems - Rigid frames - braced frames - infilled frames - stager braced systems - Mega systems. UNIT-IV SIGN tinciples of various horizontal load transfer systems - approxin 3D analysis - Member forces - displacements. Analysis for v	ation stres ete, de nd co hear mate n ariou	meth s des esign ncret walls meth s sec	12 nod. If sign, mixe 12 e - V s - wa 12 ods - onda	2HO Earth Limi es 2HO (ertic all fra 2HO Moc ry ef	UR quak t star UR al an ames UR lellin fects
Quasi static approach- LOADS AND MATE Wind loading:static and loading: Equivalent late design, Plastic design. Materials – high perfor STRUCTURAL SYST Behaviour of High Rise horizontal load resistant tubular systems - outrig ANALYSIS AND DES Analysis and Design pr for accurate analysis - 3 Creep, shrinkage and	combination of loading UNIT-II RIALS d dynamic approach, Analytical and wind tunnel experiments erait of the analysis, combinations of loading, working mance concrete, fiber reinforced concrete, lightweight concrete UNIT-III TEMS e structures - Different system for load distribution in steel and it systems - Rigid frames - braced frames - infilled frames - seger braced systems - Mega systems. UNIT-IV SIGN inciples of various horizontal load transfer systems - approxin 3D analysis - Member forces - displacements. Analysis for v temperature. Stability Analysis - Overall buckling analysis	ation stres ete, de nd co hear mate r ariou	meth s des esign ncret walls meth s sec rame	12 nod. I sign, mixe 12 e - V s - wa 12 ods - onda s, wa	2HO Earth Limi es 2HO 2HO 2HO Noc ry ef all fr	URS quak t star URS al an ames URS tellin fects rame
Quasi static approach- LOADS AND MATE Wind loading:static and loading: Equivalent late design, Plastic design. Materials – high perfor STRUCTURAL SYST Behaviour of High Rise horizontal load resistan tubular systems - outrig ANALYSIS AND DES Analysis and Design pr for accurate analysis - 3 Creep, shrinkage and approximate methods,	combination of loading UNIT-II RIALS d dynamic approach, Analytical and wind tunnel experimental erail force, modal analysis, combinations of loading, working mance concrete, fiber reinforced concrete, lightweight concrete UNIT-III TEMS e structures - Different system for load distribution in steel and at systems - Rigid frames - braced frames - infilled frames - stager braced systems - Mega systems. UNIT-IV SIGN inciples of various horizontal load transfer systems - approxin 3D analysis - Member forces - displacements. Analysis for v temperature. Stability Analysis - Overall buckling analysis second order effects of gravity loading, P - effect and variot	ation stres ete, de nd co hear mater ariou s of f	meth s des esign ncret walls meth s sec rame netho	12 nod. I sign, mixe 12 e - V - wa 12 ods - onda s, wa ds of	2HO Earth Limi es 2HO éertic ill fra 2HO Moc ry ef all fi ana	URS quak t stat URS al an ames URS lellin fects rame lysis
Quasi static approach- LOADS AND MATE Wind loading:static and loading: Equivalent late design, Plastic design. Materials – high perfor STRUCTURAL SYST Behaviour of High Rise horizontal load resistant tubular systems - outrig ANALYSIS AND DES Analysis and Design pr for accurate analysis - 3 Creep, shrinkage and approximate methods, influence of foundation	combination of loading UNIT-II RIALS d dynamic approach, Analytical and wind tunnel experiment erait of the superiment of the s	ation stres ete, de nd co hear mater ariou s of f	meth s des esign ncret walls meth s sec rame netho	12 nod. I sign, mixe 12 e - V - wa 12 ods - onda s, wa ds of	2HO Earth Limi es 2HO éertic ill fra 2HO Moc ry ef all fi ana	QURS quak t stat
Quasi static approach- LOADS AND MATE Wind loading:static and loading: Equivalent late design, Plastic design. Materials – high perfor STRUCTURAL SYST Behaviour of High Risc horizontal load resistan tubular systems - outrig ANALYSIS AND DES Analysis and Design pr for accurate analysis - 3 Creep, shrinkage and approximate methods, influence of foundation of design of tall braced	combination of loading UNIT-II RIALS d dynamic approach, Analytical and wind tunnel experiment erail force, modal analysis, combinations of loading, working mance concrete, fiber reinforced concrete, lightweight concrete UNIT-III TEMS e structures - Different system for load distribution in steel and t systems - Rigid frames - braced frames - infilled frames - stager braced systems - Mega systems. UNIT-IV SIGN inciples of various horizontal load transfer systems - approxin 3D analysis - Member forces - displacements. Analysis for v temperature. Stability Analysis - Overall buckling analysis second order effects of gravity loading, P - effect and varion instability, out of plumb effects - Elastic Deformations. Dyna frames for earthquake and blast resistant design.	ation stres ete, de nd co hear mater ariou s of f	meth s des esign ncret walls meth s sec rame netho	12 nod. I sign, mixe 12 e - V - wa 12 ods - onda s, wa ds of	2HO Earth Limi es 2HO éertic ill fra 2HO Moc ry ef all fi ana	URS quak t stat URS al an ames URS lellin fects rame lysis
Quasi static approach-o LOADS AND MATEI Wind loading:static and loading: Equivalent late design, Plastic design. Materials – high perfor STRUCTURAL SYST Behaviour of High Rise horizontal load resistant tubular systems - outrig ANALYSIS AND DES Analysis and Design pr for accurate analysis - 3 Creep, shrinkage and approximate methods, influence of foundation of design of tall braced REFERENCE BOO	combination of loading UNIT-II RIALS d dynamic approach, Analytical and wind tunnel experiment erail of the analysis, combinations of loading, working mance concrete, fiber reinforced concrete, lightweight concrete UNIT-III TEMS e structures - Different system for load distribution in steel and t systems - Rigid frames - braced frames - infilled frames - seger braced systems - Mega systems. UNIT-IV SIGN inciples of various horizontal load transfer systems - approxin 3D analysis - Member forces - displacements. Analysis for v temperature. Stability Analysis - Overall buckling analysis second order effects of gravity loading, P - effect and various instability, out of plumb effects - Elastic Deformations. Dyna frames for earthquake and blast resistant design. IKS	ation stres ete, de nd co hear mater ariou s of f	meth s des esign ncret walls meth s sec rame netho	12 nod. I sign, mixe 12 e - V - wa 12 ods - onda s, wa ds of	2HO Earth Limi es 2HO éertic ill fra 2HO Moc ry ef all fi ana	URS quak t stat URS al an ames URS lellin fects rame lysis
Quasi static approach-o LOADS AND MATE Wind loading:static and loading: Equivalent late design, Plastic design. Materials – high perfor STRUCTURAL SYST Behaviour of High Risc horizontal load resistant tubular systems - outrig ANALYSIS AND DES Analysis and Design pr for accurate analysis - 3 Creep, shrinkage and approximate methods, influence of foundation of design of tall braced REFERENCE BOOO 1. Schuller.W.G.,	combination of loading UNIT-II RIALS d dynamic approach, Analytical and wind tunnel experiment. eral force, modal analysis, combinations of loading, working mance concrete, fiber reinforced concrete, lightweight concrete UNIT-III TEMS e structures - Different system for load distribution in steel and t systems - Rigid frames - braced frames - infilled frames - stager braced systems - Mega systems. UNIT-IV SIGN inciples of various horizontal load transfer systems - approxin 3D analysis - Member forces - displacements. Analysis for v temperature. Stability Analysis - Overall buckling analysis second order effects of gravity loading, P - effect and various instability, out of plumb effects - Elastic Deformations. Dyna frames for earthquake and blast resistant design. KS "High Rise Building Structures", John Wiley & sons, 1977	ation stres ete, de nd co hear ariou s of f ous m amic	meth s des esign ncret walls metho s sec Trame netho Anal	12 nod. I sign, mixe 12 e - V - wa 12 ods - onda s, wa ds of ysis -	2HO Earth Limi 2HO Gertic all fra 2HO Moc ry ef all fi 3 ana Prir	URS quak t stat URS al an ames URS lellin fects cames lysis cciple
Quasi static approach-o LOADS AND MATE Wind loading: static and loading: Equivalent late design, Plastic design. Materials – high perfor STRUCTURAL SYST Behaviour of High Risc horizontal load resistant tubular systems - outrig ANALYSIS AND DES Analysis and Design pr for accurate analysis - 3 Creep, shrinkage and approximate methods, influence of foundation of design of tall braced REFERENCE BOO 1. Schuller.W.G., 2. Lynn.S. Beedl	combination of loading UNIT-II RIALS d dynamic approach, Analytical and wind tunnel experiment eral force, modal analysis, combinations of loading, working mance concrete, fiber reinforced concrete, lightweight concrete UNIT-III TEMS e structures - Different system for load distribution in steel and it systems - Rigid frames - braced frames - infilled frames - steer braced systems - Mega systems. UNIT-IV SIGN inciples of various horizontal load transfer systems - approxin 3D analysis - Member forces - displacements. Analysis for v temperature. Stability Analysis - Overall buckling analysis second order effects of gravity loading, P - effect and varied instability, out of plumb effects - Elastic Deformations. Dyna frames for earthquake and blast resistant design. VKS "High Rise Building Structures", John Wiley & sons, 1977 e, "Advances in Tall Buildings", CBS Publishers and Distribution	ation stres ete, de nd co hear mate r ariou s of f ous m amic	meth s des esign ncret walls meth s sec rame netho Anal	12 nod. I sign, mixe 12 e - V - wa 12 ods - onda s, wa ds of ysis -	Earth Limi 22HO 22HO 22HO Moc ry ef all fr ana Prin	UR quak t stat UR al an ames UR lellin fects ame lysis aciple 0966
Quasi static approach-o LOADS AND MATE Wind loading: static and loading: Equivalent late design, Plastic design. Materials – high perfor STRUCTURAL SYST Behaviour of High Risc horizontal load resistant tubular systems - outrig ANALYSIS AND DES Analysis and Design pr for accurate analysis - 3 Creep, shrinkage and approximate methods, influence of foundation of design of tall braced REFERENCE BOO 1. Schuller.W.G., 2. Lynn.S. Beedl	combination of loading UNIT-II RIALS d dynamic approach, Analytical and wind tunnel experiment. eral force, modal analysis, combinations of loading, working mance concrete, fiber reinforced concrete, lightweight concrete UNIT-III TEMS e structures - Different system for load distribution in steel and t systems - Rigid frames - braced frames - infilled frames - stager braced systems - Mega systems. UNIT-IV SIGN inciples of various horizontal load transfer systems - approxin 3D analysis - Member forces - displacements. Analysis for v temperature. Stability Analysis - Overall buckling analysis second order effects of gravity loading, P - effect and various instability, out of plumb effects - Elastic Deformations. Dyna frames for earthquake and blast resistant design. KS "High Rise Building Structures", John Wiley & sons, 1977	ation stres ete, de nd co hear mate r ariou s of f ous m amic	meth s des esign ncret walls meth s sec rame netho Anal	12 nod. I sign, mixe 12 e - V - wa 12 ods - onda s, wa ds of ysis -	Earth Limi 22HO 22HO 22HO Moc ry ef all fr ana Prin	UR quak t star UR al an ames UR lellin fects rame lysis aciple 0966

- 4. Gupta.Y.P.,(Editor), "Proceedings of National Seminar on High Rise Structures Design and Construction Practices for Middle Level Cities", New Age International Limited, New Delhi,1995.
- 5. Lecture Notes on "Tall Buildings" Short Term Course organized by Civil Engineering Department, SRM Engg college, Kattankulathur. June 2002
- Smith .B.S. and Coull .A., "Tall Building Structure", 'Analysis and Design', John Wiley & Sons, Inc., 1991
- 7. Taranath .B.S., "Structural Analysis and Design of Tall Buildings", Mc Graw Hill Co. 1988

Course Code	POS/C Os	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PS O1	PS O2	PS O3	PS O4
M18SE10	CO1	3	1	2		2		2	2	1		1	3	1	3	2
62	CO2	3		2		2		2	2	1		1	3	1	3	2
	CO3	3		2		2		2	2	1		1	3	1	3	2
	CO4	3		2		2		2	2	1		1	3	1	3	2

M18SE1070								L	Т	P	C	Hr
Duration: 1	6weeks	STRUC		AL ENGIN NCRETE			ATORY	0	0	4	4	3
Internal Asso	essment:	20 Marks	Sen	nester End	l Examin	ation: 30	Marks (M	inimu	m 8	Mar	ks)	
Prerequisite:	Concrete	e Technolog	gy, Che	mical adm	ixtures							
 To pr mater To in 	in experie ovide an c ials part knov	IVES:Stude ence regardin opportunity to vledge of mi mental knowl	ing the to learn	determinat n how to m gn of conci	ion of pro easure the rete	e paramete	rs, which g	-				f the
COURSE O	UTCON	IE: After su	successi	ful complet	tion of this	s course th	e student w	ill be	able	to:		
 Imple Identi Identi 	ment goo fy the qua fy the pro	d quality con ality of the n portion of th	onstruct materia the mix	ion technic ls used for	lues							
4. Perio	rm testing	on loading		MENTS 1		ADDIEI						
1 Dotor	mination	EAF of workabili					001					
		of flow prop	•	•	-		able Test					
		of degree of	•			•		est				
		of workabili		•	•	-		Cot				
		of Compres	•	•								
		of Flexure T		-								
		aggregate pr				ongation I	ndex)					
		of aggregate	-	• -		-						
		coarse aggr		1000 09 20								
-		on Test on (-	Aggregate	;							
11. Mix c	-	concrete: des				h and veri	fy whether	the de	sired	strer	ngth i	is
12. Demo	onstration	on Loading	g frame									
13. Demo	onstration	on Shake Ta	Table									
REFEREN	CE BOO	KS										
1. "Labo	oratory M	anual on Co v Delhi, 200		e Technolo	gy" Sood	, Hemant,	Mittal L N	I and	Kull	karni	P D	, CI
		Concrete Ma Delhi 1992	lanual l	Laboratory	testing fo	r quality o	control of co	oncret	e 4 th	editio	on Dl	hanp
3. IS 10	262-2012	Code for M	Air dooi	an of cone	rata							

Course Code	POS/C Os	P 01	P O2	Р О3	Р 04	Р О5	Р Об	Р 07	P 08	Р 09	PO 10	PO 11	PS O1	PS O2	PS O3	PS O4
M18SE10	CO1	3	2		2	2	1		1			1	3	1	2	2
70	CO2	3	2		2	2	1		1			1	3	1	2	2
	CO3	3	2		2	2	1		1			1	3	1	2	2
	CO4	3	2		2	2	1		1			1	3	1	2	2

SECOND SEMESTER

M18SE2010		L	Т	Р	С	Hrs.
Duration: 16weeks	FINITE ELEMENT ANALYSIS	3	1	0	4	5
Internal Assessment:	50 Marks Semester End Examination: 50 Marks (Mir	nimu	m 20) Ma	rks)	
Prerequisite: Structura	l Analysis – II, Theory of Elasticity					
COURSE OBJECT	VES: Student will be able to learn					
To learn aboutTo learn about	the basic concepts and principles of structural mechanics, FD2 the basic analysis procedure, advantages and disadvantages of various types of finite elements used element stiffness matrices and load vectors for bar, beam, t	f FEN	Л.			plane
stress/strain ele		1 bo a	bla t	0.		
	IE: After successful completion of this course the student will at the basic concepts and principles of structural mechanics, F				GM	-
	t the basic concepts and principles of structural mechanics, Pa				UN	•
	t various types of finite elements used	0111				
	e the element stiffness matrices and load vectors for bar, beam	trus	s nla	ne fr	ame	nlane
stress/strain ele		, uus	5, più		unie,	plune
	UNIT-I			12	2HO	URS
Approximate methods of method, Principles invo and disadvantages of FI Finite elements for 1- coordinates, Displacen function, Derivation of Triangular elements, I displacement function -	l background, Principles of virtual displacement and mir of analysis - concepts of Finite Difference Method, Rayleigh-H olved in FEM, Basic analysis procedure of FEM for structur EM, , Static and kinematic variables for various structural pro D, 2-D and 3-D problems, Coordinate systems – member nent functions for various structural problems – polynomia Shape functions for standard elements – Bar elements, Beam e Rectangular elements, Quadrilateral elements –Higher ord C ⁰ , C ¹ and C ² Continuity functions, Lagrangian, Hermitian of elements, Convergence requirements, Geometric invariance	Ritz r al problem er, st al fo eleme er E Polyi	netho obler s. ructu rm c ents, leme nomi	od an ns, A ure a of dis Trus nts, als, S	d Ga dvan nd n splac s eler Choi Seren	lerkin ntages natural ement ments, ice of dipity
	UNIT-II			11	ЭНО	URS
Bar, Beam, Truss and Fr and Quadratic bar elem Linear static analysis o	stiffness, Derivation of strain-displacement matrices and elem rame elements (planar), Linear static analysis of one-dimension ents, Treatment of boundary conditions – Elimination approa f indeterminate beams, continuous beams and beams on ela analysis of pin jointed plane trusses, Considerations for lack o	nal pr ch ar stic s	oblen nd Pe suppo	ess n ms us nalty orts u	natric sing l app sing	ces for Linear roach. beam
Two dimensional prob	lems, Derivation of properties for Constant Strain Triangle	elem	nent	(CST	elei	nent),
	inate information using Jacobian, Application to plane stress, p	olane	straiı	n, axi	sym	netric
problems using CST an	d quadrilateral elements.			-		
	UNIT-III					URS
	etric elements, sub and super parametric elements, Advant e requirements for Iso-parametric elements, Concept of ma	-			_	

elements, Iso-parametric formulation of 4-noded quadrilateral element, Numerical Integration by Gauss quadrature rule –one-point rule, two-point rule, n-point rule, including numerical examples.

Dynamic considerations in FEM, Concept of consistent and lumped load vectors, Consistent and Lumped mass matrices in local and global coordinate systems – for bar, beam, frame and truss elements, Evaluation of Eigenvalues and Eigenvectors, Free vibration analysis, techniques of non-liner analysis.

UNIT-IV

12HOURS

Modeling considerations and Use of software – Mesh generation and refinement, Element selection, Material properties, Loads and reactions, Connections in structures, Boundary conditions, Symmetry and anti-symmetry, Stress concentrations, Sub-structuring, Methods of model generation, Common mistakes in modelling, analysis and design capabilities.

Organization of Computer Program for FEM – flowcharts, Classification and structure of finite element analysis software programs, Desired features of Pre and Post Processors, Commonly used commercial software packages, Use of Software to analyse Bar, Beam, Frame and Plane Stress/Strain problems.

REFERENCE BOOKS

- Finite element analysis Theory and Programming, C S Krishnamurthy, McGraw Hill
- Fundamental of finite Element Analysis, David V Hutton, McGraw Hill
- Introduction to Finite Element Method, Desai & Abel, CBS Publishers
- Bhatti, M.A., Fundamental Finite Element Analysis and Applications: with Mathematica and Matlab Computations, Wiley, 2005.
- Reddy, J. N., An Introduction to the Finite Element Method, 3rd Edition, McGraw-Hill Science/Engineering/Math,2005.
- Logan D. L., A First Course in the Finite Element Method, Thomson- Engineering, 3rd edition, 2001.
- The Finite Element Methods and its basics and fundamentals , Zienkiewicz & Taylor, Elsevier Publications

Course Code	POS/C Os	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PSO 1	PSO 2	PSO 3	PSO 4
M18SE20	CO1	3	3	3	1	2		2	2	1		1	3	3	1	2
10	CO2	3	3	3	1	2		2	1	1		1	3	3	1	2
	CO3	3	3	3	1	2		2	1	1		1	3	3	1	2
	CO4	3	3	3	1	2		2	1	1		1	3	3	1	2

Mapping of Course Outcomes with programme Outcomes

M18SE2020		ANCED DESIGN OF FOUNDATIONS	L	T	'	P	С	Hr
Duration: 16weeks		Inced Design of Foundations	3	1		0	4	5
Internal Assessment:	50 Marks	Semester End Examination: 50 Marks (I	Minim	um	20	Ma	rks)	
Prerequisite: Geotech	nical Enginee	ering						
COURSE OBJECTI	IVES:Studen	nt will be able to learn						
1. To learn method of e	stimating bea	ring capacity and design of shallow foundation	ons					
2. To learn design of pil	le foundations	S						
3. To learn methods and	d design of we	ell foundations						
4. To learn soil structure	e interaction							
COURSE OUTCOM	1E:							
After successful comple	etion of this c	ourse the student will be able to:						
	-	earing capacity and design of shallow foundat	ions					
2. has learnt design of p								
3. has learnt methods ar	-							
4. has learnt soil structu	re interaction					Т		
						10	НО	UR
and raft, code provision buoyancy raft, basemen	s. Design of in t raft, underp	UNIT-II	oting, 1	rigid	an	ents d fle 12	xibl	e m UR
and raft, code provision buoyancy raft, basemen Pile Foundations: Estim Pile load testing (stati	s. Design of in t raft, underp nation load ca c, dynamic	bearing capacity estimation, total and differ ndividual footings, strip footing, combined for inning. UNIT-II rrying capacity of single and pile group unde methods and data interpretation), settlemen	oting, 1 r variou	rigid us lo	an	ents d fle 12 ing c	xibl HO	e m UR
and raft, code provision buoyancy raft, basemen Pile Foundations: Estim Pile load testing (stati	s. Design of in t raft, underp nation load ca c, dynamic	bearing capacity estimation, total and differ ndividual footings, strip footing, combined for inning. UNIT-II rrying capacity of single and pile group unde methods and data interpretation), settlemen pile groups, and pile caps.	oting, 1 r variou	rigid us lo	an	ents d fle 12 ing c indat	HO condition,	e m UR ition co
and raft, code provision buoyancy raft, basemen Pile Foundations: Estim Pile load testing (stati provisions, design of sin	s. Design of in it raft, underp nation load ca c, dynamic ngle pile and	bearing capacity estimation, total and differ ndividual footings, strip footing, combined for inning. UNIT-II rrying capacity of single and pile group unde methods and data interpretation), settlemen pile groups, and pile caps. UNIT-III	oting, 1 r variou nt of p	igid 1s lc	an adi fou	ents d fle 12 ing c indat 12	exible HO condition,	e m UR ition co
and raft, code provision buoyancy raft, basemen Pile Foundations: Estim Pile load testing (stati provisions, design of sin Well Foundations: Ty	s. Design of in at raft, underp nation load ca c, dynamic ngle pile and pes, compon	bearing capacity estimation, total and differ ndividual footings, strip footing, combined for inning. UNIT-II rrying capacity of single and pile group unde methods and data interpretation), settlemen pile groups, and pile caps. UNIT-III ments, construction methods, design metho	oting, 1 r variou nt of p	igid 1s lc	an adi fou	ents d fle 12 ing c indat 12	exible HO condition,	e m UR ition co
and raft, code provision buoyancy raft, basemen Pile Foundations: Estim Pile load testing (stati provisions, design of sin Well Foundations: Ty	s. Design of in at raft, underp nation load ca c, dynamic ngle pile and pes, compon	bearing capacity estimation, total and differ ndividual footings, strip footing, combined for inning. UNIT-II rrying capacity of single and pile group unde methods and data interpretation), settlemen pile groups, and pile caps. UNIT-III ments, construction methods, design method e pressure, side pressure and deflection.	oting, 1 r variou nt of p	igid 1s lc	an adi fou	ents d fle ing c indat 12 IS	Exible HO condition, tion, HO and	e ma UR itior co UR
and raft, code provision buoyancy raft, basemen Pile Foundations: Estim Pile load testing (stati provisions, design of sin Well Foundations: Ty approaches), check for s	s. Design of in at raft, underp nation load ca c, dynamic ngle pile and pes, compon stability, base	bearing capacity estimation, total and differ ndividual footings, strip footing, combined for inning. UNIT-II rrying capacity of single and pile group unde methods and data interpretation), settlemen pile groups, and pile caps. UNIT-III ments, construction methods, design method e pressure, side pressure and deflection. UNIT-IV	oting, 1 r variou at of p ds (Te	rigid us lo ile erzag	an adi fou ghi,	ents d fle 12 ing c indat 12 IS	Exible Condition, CHO and CHO	e m UR ition co UR I IF
and raft, code provision buoyancy raft, basemen Pile Foundations: Estim Pile load testing (stati provisions, design of sin Well Foundations: Ty approaches), check for s Soil-Foundation Interac	s. Design of in it raft, underp nation load ca c, dynamic m ngle pile and p pes, compon stability, base	bearing capacity estimation, total and differ ndividual footings, strip footing, combined for inning. UNIT-II rrying capacity of single and pile group unde methods and data interpretation), settlemen pile groups, and pile caps. UNIT-III nents, construction methods, design method e pressure, side pressure and deflection. UNIT-IV ed soil, foundation and interface behavior. Ela	oting, 1 r variou nt of p ds (Te	rigid 1s lc ile rrzag	an adi fou ghi,	ents d fle ing c indat 12 IS IS	Exible Condition, CHO and CHO L beh	e m UR ition co UR I IF
and raft, code provision buoyancy raft, basemen Pile Foundations: Estim Pile load testing (stati provisions, design of sin Well Foundations: Ty approaches), check for s Soil-Foundation Interac Elastic-plastic and time	s. Design of in at raft, underp nation load ca c, dynamic m ngle pile and p pes, compon stability, base ction : Idealize dependent be	bearing capacity estimation, total and differ ndividual footings, strip footing, combined for inning. UNIT-II rrying capacity of single and pile group unde methods and data interpretation), settlemen pile groups, and pile caps. UNIT-III ments, construction methods, design method e pressure, side pressure and deflection. UNIT-IV ed soil, foundation and interface behavior. Ela ehavior of soil. Beams and plates on elastic for	oting, 1 r variou nt of p ds (Te	rigid 1s lc ile rrzag	an adi fou ghi,	ents d fle ing c indat 12 IS IS	Exible Condition, CHO and CHO L beh	e m UR ition co UR I IF
and raft, code provision buoyancy raft, basemen Pile Foundations: Estim Pile load testing (stati provisions, design of sin Well Foundations: Ty approaches), check for s Soil-Foundation Interac Elastic-plastic and time of beams and plates rest	s. Design of in it raft, underp nation load ca c, dynamic m ngle pile and pes, compon stability, base etion : Idealize dependent be ting on elastic	bearing capacity estimation, total and differ ndividual footings, strip footing, combined for inning. UNIT-II rrying capacity of single and pile group unde methods and data interpretation), settlemen pile groups, and pile caps. UNIT-III ments, construction methods, design method e pressure, side pressure and deflection. UNIT-IV ed soil, foundation and interface behavior. Ela ehavior of soil. Beams and plates on elastic for	oting, 1 r variou nt of p ds (Te	rigid 1s lc ile rrzag	an adi fou ghi,	ents d fle ing c indat 12 IS IS	Exible Condition, CHO and CHO L beh	e m UR ition co UR I IF
and raft, code provision buoyancy raft, basemen Pile Foundations: Estim Pile load testing (stati provisions, design of sin Well Foundations: Ty approaches), check for s Soil-Foundation Interac Elastic-plastic and time of beams and plates rest REFERENCE BOO	s. Design of in it raft, underp nation load ca c, dynamic m ngle pile and p pes, compon stability, base tion : Idealize dependent be ting on elastic KS	bearing capacity estimation, total and differ ndividual footings, strip footing, combined for inning. UNIT-II rrying capacity of single and pile group unde methods and data interpretation), settlemen pile groups, and pile caps. UNIT-III ments, construction methods, design metho e pressure, side pressure and deflection. UNIT-IV ed soil, foundation and interface behavior. Ela chavior of soil. Beams and plates on elastic fo c foundation.	oting, 1 r variou at of p ds (Te stic mo undatio	igid us lc ile odeli on; n	an adi fou ghi, s of um	ents d fle ing c indat IS IS 12 Soil eeric	HO condition, tion, and HO l beh al an	e m UR ition co UR I IF UR avid
and raft, code provision buoyancy raft, basemen Pile Foundations: Estim Pile load testing (stati provisions, design of sin Well Foundations: Ty approaches), check for s Soil-Foundation Interac Elastic-plastic and time of beams and plates rest REFERENCE BOO	s. Design of in it raft, underp nation load ca c, dynamic m ngle pile and p pes, compon stability, base tion : Idealize dependent be ting on elastic KS	bearing capacity estimation, total and differ ndividual footings, strip footing, combined for inning. UNIT-II rrying capacity of single and pile group unde methods and data interpretation), settlemen pile groups, and pile caps. UNIT-III ments, construction methods, design method e pressure, side pressure and deflection. UNIT-IV ed soil, foundation and interface behavior. Ela ehavior of soil. Beams and plates on elastic for	oting, 1 r variou at of p ds (Te stic mo undatio	igid us lc ile odeli on; n	an adi fou ghi, s of um	ents d fle ing c indat IS IS 12 Soil eeric	HO condition, tion, and HO l beh al an	e m UR ition co UR I IF UR aavid aaly;
and raft, code provision buoyancy raft, basemen Pile Foundations: Estim Pile load testing (stati provisions, design of sin Well Foundations: Ty approaches), check for s Soil-Foundation Interac Elastic-plastic and time of beams and plates rest REFERENCE BOO 1. A.P.S. Selvadurai, ' Company.	s. Design of in t raft, underp nation load ca c, dynamic mail ngle pile and p pes, compon stability, base tion : Idealize dependent be ting on elastic KS 'Elastic Anal	bearing capacity estimation, total and differ ndividual footings, strip footing, combined for inning. UNIT-II rrying capacity of single and pile group unde methods and data interpretation), settlemen pile groups, and pile caps. UNIT-III ments, construction methods, design metho e pressure, side pressure and deflection. UNIT-IV ed soil, foundation and interface behavior. Ela chavior of soil. Beams and plates on elastic fo c foundation.	oting, 1 r variou at of p ds (Te undation ier Sci	igid us lc ile odeli on; n	an adi fou ghi, s of um	ents d fle ing c indat IS IS 12 Soil eeric	HO condition, tion, and HO l beh al an	e m UR ition co UR I IF UR aavid aaly;
and raft, code provision buoyancy raft, basemen Pile Foundations: Estim Pile load testing (stati provisions, design of sin Well Foundations: Ty approaches), check for s Soil-Foundation Interac Elastic-plastic and time of beams and plates rest REFERENCE BOO 1. A.P.S. Selvadurai, ' Company. 2. Braja M. Das, "Princi	s. Design of in it raft, underp nation load ca c, dynamic m ngle pile and pes, compon stability, base tion : Idealize dependent be ting on elastic KS 'Elastic Anal iples of Found	bearing capacity estimation, total and differ ndividual footings, strip footing, combined for inning. UNIT-II rrying capacity of single and pile group unde methods and data interpretation), settlemen pile groups, and pile caps. UNIT-III nents, construction methods, design method e pressure, side pressure and deflection. UNIT-IV ed soil, foundation and interface behavior. Ela ehavior of soil. Beams and plates on elastic for c foundation.	oting, 1 r variou nt of p ds (Te ustic mo undatic ier Sci uny.	igid us lc ile odeli on; n	an adi fou ghi, s of um	ents d fle ing c indat IS IS 12 Soil eeric	HO condition, tion, and HO l beh al an	e m UR ition co UR I IF UR avid
and raft, code provision buoyancy raft, basemen Pile Foundations: Estim Pile load testing (stati provisions, design of sin Well Foundations: Ty approaches), check for s Soil-Foundation Interac Elastic-plastic and time of beams and plates rest REFERENCE BOO 1. A.P.S. Selvadurai, ' Company. 2. Braja M. Das, "Prince 3. Joseph Bowles, "Fou	s. Design of in t raft, underp nation load ca c, dynamic m ngle pile and p pes, compon stability, base tion : Idealize dependent be ting on elastic KS 'Elastic Anal iples of Found indation Anal	bearing capacity estimation, total and differ ndividual footings, strip footing, combined for inning. UNIT-II rrying capacity of single and pile group unde methods and data interpretation), settlemen pile groups, and pile caps. UNIT-III ments, construction methods, design method e pressure, side pressure and deflection. UNIT-IV ed soil, foundation and interface behavior. Ela chavior of soil. Beams and plates on elastic for c foundation. lysis of Soil-Foundation Interaction", Elsev dation Engineering", PWS Publishing Compa	oting, 1 r variou at of p ds (Te undation ier Sci any.	igid us lo ile odeli on; n	andi padi fou ghi, s of um	ents d fle ing c indat 12 IS IS 12 E soil eeric	HO condition, HO and beh al an	e m UR ition co UR I IF uavia

Course	POS/	P	P	P	P	P	P	P	P	P	P	P	PS O1	PS	PS	PS
Code	COs	0	0 2	0 3	0 4	0 5	0 6	0 7	8	0 9	01 0	01 1	01	02	03	04
M18SE	CO1	3	1	2		2		2	2	1		1	3	1	3	2
2020	CO2	3		2		2		2	2	1		1	3	1	3	2
	CO3	3		2		2		2	2	1		1	ß	1	3	2
	CO4	3		2		2		2	2	1		1	З	1	3	2

M18SE2030			L	Т	Р	C	Hrs.
Duration: 16weeks	ADVAN	CED DESIGN OF STEEL STRUCTURES	3	1	0	4	5
Internal Assessment:	50 Marks	Semester End Examination: 50 Marks (Mi	nimu	m 20) Ma	rks)	
Prerequisite: Design o	f Steel struct	ures					
COURSE OBJECT	IVES:Studer	nt will be able to learn					
1. To familiarize	with industria	al structures such as gantry girder, crane girder					
2. To understand	the design co	ncept of cooling towers, bunkers and silos					
3. To familiarize	with transmis	sion towers					
4. To familiarize	e the design	of chimneys					
		cessful completion of this course the student wi y girders, crane girders which are compulsorily u				cturir	ıg
	he concept of	analysis and design of power plants, containme	nt str	uctur	es su	ch as	3
cooling towers,	-						
3. Able to analyze							
4. Able to analyz	ze and desig	n chimneys					
		UNIT-I			12	2HO	URS
PLANNING AND FUN	NCTIONAL I	REQUIREMENTS					
Classification of Indust	ries and Indu	strial structures - planning for Layout Requirem	ents r	regard	ling l	Light	ing,
Ventilation and Fire Sat	fety - Protect	ion against noise and vibration, Guidelines of Fa	actori	es Ac	et.		
		UNIT-II			12	2HO	URS
INDUSTRIAL BUILD Design of Corbels and I		Gantry Girder, Crane Girders –					
		UNIT-III			12	РНО	URS
POWER PLANT STRU Bunkers and Silos - Pip		Sypes of power plants – Containment structures	- Coo	ling	Гowe	ers -	
Dulikers and Shos - Pip	e supporting	UNIT-IV			12	НО	URS
TRANSMISSION LIN	FSTRUCTU	IRES AND CHIMNEYS: Analysis and design of	f tran	emie			
		ng of towers – Design of self supporting chimne					
REFERENCE BOO	KS						
		55					

Course Code	POS/C Os	Р 01	P 02	Р О3	Р 04	Р О5	Р Об	Р 07	Р 08	Р 09	PO 10	PO 11	PS O1	PS O2	PS O3	PS O4	
M18SE20	CO1	3	1	2		2		2	2	1		1	3	1	3	2	
30	CO2	3		2		2		2	2	1		1	3	1	3	2	
	CO3	3		2		2		2	2	1		1	3	1	3	2	
	CO4	3		2		2		2	2	1		1	3	1	3	2	

Where, 1 (Low), 2 (Medium) and 3 (High) represents strength of correlation between CO and PO.

1. Jurgen Axel Adam, Katharria Hausmann, Frank Juttner, Klauss Daniel, Industrial Buildings: A Design Manual, Birkhauser Publishers, 2004.

2. Manohar S.N, Tall Chimneys - Design and Construction, Tata McGraw Hill, 1985

3. Santhakumar A.R. and Murthy S.S., Transmission Line Structures, Tata McGraw Hill, 1992

4. Srinivasulu P and Vaidyanathan.C, Handbook of Machine Foundations, Tata McGraw Hill

	ation: 16weeks STRUCTURAL HEALTH MONITORING 3 1 rnal Assessment: 50 Marks Semester End Examination: 50 Marks (Minimum equisite: Design of Reinforced Concrete Structures UNESE OBJECTIVES: Student will be able to learn • To learn the causes for deterioration of concrete and Non Destructive Tests • • To learn about effect of corrosion and prevention of concrete • • To learn detailed procedure of evaluating damaged structures • • To learn about maintenance of concrete structures • URSE OUTCOME: After successful completion of this course the student will be able • 1 Has learnt about effect of corrosion and prevention of concrete 2. Has learnt about maintenance of concrete structures 2. Has learnt about maintenance of concrete structures 4. Has learnt about maintenance of concrete structures 2. Has learnt about maintenance of concrete structures 4. Has learnt about maintenance of concrete structures 1. UNIT-1 eral: Introduction, Cause of deterioration of concrete structures, Diagnosti 19y asynarce for concrete construction as built concrete properties strength ma		Τ	P	С	Hrs			
Duration: 16weeks		1	0	4	5				
		m 20) Ma	rks)					
1 0									
COURSE OBJECTI	VES:Studen	will be able to learn	L						
• To learn the cau	uses for deteri	pration of concrete an	nd Non Destruct	ive Tests					
• To learn about	effect of corro	sion and prevention	of concrete						
• To learn detaile	d procedure o	f evaluating damaged	d structures						
• To learn about	maintenance of	f concrete structures							
COURSE OUTCOM	IE:After succ	essful completion of	this course the s	student wil	l be a	ble to	0:		
1. Has learnt the c	auses for dete	rioration of concrete	and Non Destru	ctive Tests	5				
4. Has learnt abou	t maintenance		es						
		UNIT-I					12	НО	UR
core drilling and other i Quality assurance for thermalproperties and c	nstrumental m r concrete o racking.	ethods. onstruction as bui	ilt concrete pr	operties	stren	gth,	pern	neabi	ility,
core drilling and other i Quality assurance for thermalproperties and c Influence on Serviceabi Design and construction	nstrumental m r concrete of racking. lity and Dural n errors, corro	ethods. construction as bui pility: Effects due to sion mechanism, Effects of the state of the s	ilt concrete pr climate, tempera ects of cover thic	operties ature, chen ckness and	strens nicals cracl	gth, , wea king,	pern pern ar and lic pr	neabi deros	ility, sion, tion.
core drilling and other i Quality assurance for thermalproperties and c Influence on Serviceabi Design and construction Methods of corrosion pr	nstrumental m r concrete of racking. lity and Dural n errors, corro rotection, corro	ethods. onstruction as bui pility: Effects due to sion mechanism, Effe osion inhibitors, corre UNIT-II	ilt concrete pr climate, tempera ects of cover thic osion resistant st	operties ature, chen ckness and eels, coatin	streng nicals crach ngs, c	gth, , wea king, athoc	pern pern ar and dic pr 12	neabi deros rotect	ility, sion, tion. UR
core drilling and other i Quality assurance for thermalproperties and c Influence on Serviceabi Design and construction Methods of corrosion pr Maintenance and Rep Maintenance, importance	nstrumental m r concrete of racking. lity and Dural n errors, corro rotection, corro pair Strategie ce of Mainten	ethods. construction as bui bility: Effects due to sion mechanism, Effects osion inhibitors, correct UNIT-II S: Definitions: Mai unce, Preventive mea	ilt concrete pr climate, tempera ects of cover thic osion resistant st intenance, repai sures on various	operties ature, chen ckness and eels, coatin ir and re aspects. In	streng nicals cracl ngs, c habili nspec	gth, a, weaking, athoc itation,	sion i pern ar and lic pr 12 n, F	neabi deros rotect 2HO	ility, sion, tion. UR
core drilling and other i Quality assurance for thermalproperties and c Influence on Serviceabi Design and construction Methods of corrosion pr Maintenance and Rep Maintenance, importance	nstrumental m r concrete of racking. lity and Dural n errors, corro rotection, corro pair Strategie ce of Mainten	ethods. onstruction as bui bility: Effects due to sion mechanism, Effe osion inhibitors, corre UNIT-II s: Definitions: Mai unce, Preventive mea a damaged structure	ilt concrete pr climate, tempera ects of cover thic osion resistant st intenance, repai sures on various	operties ature, chen ckness and eels, coatin ir and re aspects. In	streng nicals cracl ngs, c habili nspec	gth, a, weaking, athoc itation,	sion i pern ar and lic pr 12 n, F	neabi deros rotect 2HO	ility, sion, tion. UR s of
core drilling and other i Quality assurance for thermalproperties and c Influence on Serviceabi Design and construction Methods of corrosion pr Maintenance and Rep Maintenance, importance Assessment procedure f Materials for Repair: S strength gain, Expansi reinforced concrete. Techniques for Repair: 1	nstrumental m r concrete of racking. lity and Dural n errors, corro- rotection, corr	ethods. construction as build pility: Effects due to sion mechanism, Effects osion inhibitors, correct UNIT-II s: Definitions: Maince, Preventive mea a damaged structure UNIT-III tes and mortars, con olymer concrete, su	ilt concrete pr climate, tempera ects of cover thic osion resistant st intenance, repais sures on various causes of deterior crete chemicals ulphur infiltrate ing for rebar dur	operties ature, chen ckness and eels, coatin ir and re aspects. In pration - te , special e d concrete ing repair	streng nicals crach ngs, c habili nspec sting lemen e, Fe	gth, , weaking, athoc itation, itation, techning nts for rro c	sion i pern ar and dic pr 12 n, F nique 12 or ac cemen	deros rotect 2HO facets 28. 2HO celer nt, F	ility, sion, tion. URiss of URist ated Fibre
core drilling and other i Quality assurance for thermalproperties and c Influence on Serviceabi Design and construction Methods of corrosion pr Maintenance and Rep Maintenance, importance Assessment procedure f Materials for Repair: S strength gain, Expansi reinforced concrete. Techniques for Repair: I and dry pack, vacuum c	nstrumental m r concrete of racking. lity and Dural n errors, corro- rotection, corr	ethods. construction as build pility: Effects due to sion mechanism, Effects osion inhibitors, correct UNIT-II s: Definitions: Maince, Preventive mea a damaged structure UNIT-III tes and mortars, con olymer concrete, su rs and polymers coat e and Shot Crete Epo	ilt concrete pr climate, tempera ects of cover thic osion resistant st intenance, repais sures on various causes of deterior crete chemicals ulphur infiltrate ing for rebar dur	operties ature, chen ckness and eels, coatin ir and re aspects. In pration - te , special e d concrete ing repair	streng nicals crach ngs, c habili nspec sting lemen e, Fe	gth, , weaking, athoc itation, itation, techning nts for rro c	sion i pern ar and dic pr 12 n, F n, F nique or ac cemer ncret s, sho	deros rotect 2HO facets 28. 2HO celer nt, F	ility, sion, tion. URS of URS rated Fibre

Application of SHM in Civil Engineering: Introduction to capacitive methods, capacitive probe for cover concrete, SHM of a bridge, applications for external post- tensioned cables, monitoring historical buildings.

REFERENCES

- 1. Sidney, M. Johnson "Deterioration, Maintenance and Repair of Structures".
- 2. Denison Campbell, Allen & Harold Roper, "Concrete Structures Materials, Maintenance and Repair"- Longman Scientific and Technical
- 3. R.T.Allen and S.C. Edwards, "Repair of Concrete Structures"-Blakie and Sons
- 4. Raiker R.N., "Learning for failure from Deficiencies in Design, Construction and Service"- R&D Center (SDCPL)
- 5. B.Vidiveli, "Rehabilitation of Concrete Structures", Standard Publishers.
- 6. B.L.Gupta and Amit Gupta, "Maintenance and Repair of Civil Structures", Standard Publishers.
- 7. Gahlot and Sharma, "Building Repair and Maintenance Management", CBS Publishers.
- 8. Daniel Balag eas, Claus-PeterFritzen and Alfredo Guemes Structural Health Monitoring, Published by ISTE Ltd., U.K., 2006.

Mapping of Course Outcomes with programme Outcomes

Course Code	POS/C Os	P 0 1	P 0 2	P 0 3	P 0 4	P O 5	P O 6	P 0 7	P O 8	P O 9	PO 10	PO 11	PS O1	PS O2	PS O3	PS O4
M18SE2	CO1	2	1		2	1	2	1	2		1	1	2	1	1	2
040	CO2	2	1		2	1	2	1	2		1	1	2	1	1	2
	CO3	2			2	1	2	1	2		1	1	2	1	1	2
	CO4	2			2	1	2	1	2		1	1	2	1	1	2

M18SE2051	DESI	GN OF EAR	THQUAKE RE	SISTANT	L	Т	Р	С	Hrs
Duration: 16weeks		STI	RUCTURES		3	1	0	4	5
Internal Assessment:	50 Marks	Semester E	End Examination	n: 50 Marks (Mi	nimu	m 20) Ma	rks)	
Prerequisite: Design o	f RCC	1							
COURSE OBJECT	IVES:Studer	nt will be able	to learn						
1. To familiarize	with causes of	f earthquake	and its history						
2. To understand	the principles	of seismic de	esign						
3. To learn respo	onse spectrui	m method ar	d time accelerat	tion method					
4. To learn Earth	quake resistar	nt design of r	nasonry buildings						
COURSE OUTCOM	IE: After suc	ccessful com	oletion of this cou	rse the student wi	ll be	able	to:		
1. To gain comple		-							
2. Use codal prov	isions for the	analysis and	design of structur	es to resist seismi	c for	ces			
3. Is able to und	erstand respo	onse spectru	m method and ti	me acceleration	metl	nod			
	-	-	nasonry building						
		UNIT	-I				12	2HO	URS
Elements of Earthquake	e Origin								
Elements of Seismolog	y - Earthquak	es -Structure	of the Earth -His	tory of the Earth	-Earth	nqual	ke M	echa	nism
Propagation of Seismic	Waves -Earth	nquake Pheno	mena -Earthquak	e Measurements -	Defir	ition	sof	magn	nitude
intensity, epicentre, Pla	te tectonics, s	seismographs	, liquefaction, Ty	pes, effects and c	ontro	lling	facto	ors se	eismi
zoning map of India, Pe	eak ground m	otion parame	ters.						
		UNIT	II				12	2HO	URS
Principles of Seismic D	esign								
Codal provision for des	sign – IS 1893	3-2002 - aspe	cts in planning an	d layout -Princi	ples o	of des	sign -	- cho	oice c
materials - ductility bas	sed design –E	Effect of Struc	tural Irregularitie	s on seismic perfe	ormai	nce o	f RC	buil	dings
Vertical irregularity an	d plan config	guration prob	lems, Seismic re	sistant building a	rchite	ectur	e – 1	atera	1 loa
resistant systems, build	ing characteri	istics.							
		UNIT-	III				12	2HO	URS
Earthquake Resistant D	esign						•		
Principles of Earthqua	ake Resistant	t Design - I	Response spectru	m theory. Time	– A	ccel	eratio	on m	netho
Application of response	e spectrum the	eory to seism	c design of struct	ures.					
Computation of seismi	c forces in n	nulti-storied	buildings – using	g procedures (Equ	uivale	ent la	teral	forc	e an
dynamic analysis) as p	er IS-1893.C	odal provisio	n for detailing fo	or earthquake resi	stanc	e- IS	139	20-1	993
shear wall design and d	etailing								
		UNIT-	IV				12	2HO	UR
Earthquake resistant de	sign of masor	nry buildings							
Elastic properties of str	uctural masor	nry, lateral lo	ad analysis. Desig	n of two storeved	lmas	onrv	build	lings	
REFERENCE BOO			<i>ia analysis, 2 corg</i>	,		J			<u> </u>
		of Charlestown	Domiroi A morrie	l. Manish Shrikha	inde.	PHI	Lear	ning	
	SISTATE DESIGN	i of Siruciure	S Pankai Agrawa	i, internoti on muite	mae,		Dom	B	
 Earthquake Res Dynamics of S 	-		• •	hquake Engineeri	ng, A	K C	hopr	a, Pr	entic
 Earthquake Res Dynamics of S Hall 	tructures: The	eory and App	plications to Earth	hquake Engineeri McGraw-Hill Ed	-		hopr	a, Pr	entic

- 4. Structural Dynamics by Mario & Paz, Springer.
- 5. Earthquake Resistant Design by David J. Dowrick, Wiley India Pvt Ltd
- 6. Elements of Earthquake Engg by Jai Krishna, A.R. Chandrasekaran, Brijesh Chandra, South Asian Publishers.
- 7. IS 1893-2002 Indian Standard Criteria for Earthquake Resistant Design of Structures.
- 8. IS 4326-1993 2002 Indian Standard for Earthquake Resistant Design and Construction of Buildings.
- 9. IS 13920-1993 2002 Ductile detailing of Reinforced Concrete Structures subjected to Seismic Forces.

Course Code	POS/C Os	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PSO 1	PSO 2	PSO 3	PSO 4
M18SE20	CO1	2	1	1			1		1				2	1		2
51	CO2	2	2	2		1	1		1		1		2	1	2	2
	CO3	2	2	2		1	1		1		1		2	1	2	2
	CO4	2	2	2		1	1		1		1		2	1	2	2

M18SE2052	CT A D		DEC	L	Τ	P	C	Hrs
Duration: 16weeks	SIAB.	LITY ANALYSIS OF STRUCTU	KES	3	1	0	4	5
Internal Assessment:	50 Marks	Semester End Examination: 50 M	Aarks (Min	nimu	m 20	0 Ma	ırks)	
Prerequisite: SOM, SA	A-I and SA-II							
COURSE OBJECT	IVES:Studen	t will be able to learn						
• To analyze bea	um columns su	bjected to different loadings and end	conditions					
•		nd mode of frames and continuous b						
• To determine different metho	-	and mode of columns with differe	ent end con	nditio	ons a	nd le	badir	ngs b
		of columns, pin-jointed frames and	portal fram	ies b	y FEI	М		
COURSE OUTCON	/IE: After suc	ressful completion of this course the	student wil	1 be a	able t	0:		
		nns subjected to different loadings ar						
		load and mode offrames and continu						
3. Is able to determine different method		load and mode of columns with diffe	erent end co	ondit	ions	and l	oadi	ngs b
4. Is able to perfo	rm buckling a	nalysis of columns, pin-jointed frame	es and porta	al fra	mes	by Fl	EM	
		UNIT-I				12	2НО	UR
severalconcentrated lo	oads, (iii) con	tion. Beam column subjected to (atinuous lateral load. Application ential equation for pined – pined, fixe	of trigono	ometi	ric s	eries	, Eu	ler's
severalconcentrated lo formulation using fourt pinned column. Buckling of frames and	bads, (iii) con th order differ d continuous l	tinuous lateral load. Application	of trigono ed – fixed, proximate ca	ometr fixec alcul	ric s l – fr	eries, ee an	, Eu d fix	ler's ed –
severalconcentrated lo formulation using fourt pinned column. Buckling of frames and	bads, (iii) con th order differ d continuous l	ntinuous lateral load. Application ential equation for pined – pined, fixe beams. Elastic Energy method –Appr	of trigono ed – fixed, proximate ca	ometr fixec alcul	ric s l – fr	eries, ee an ofcr	, Eu d fix	ler's ed – load
severalconcentrated lo formulation using fourt pinned column. Buckling of frames and for a cantilever. Exact of Buckling of bar on elas of critical loads by succ	bads, (iii) cont th order different d continuous l critical load for stic foundation cessive approx	atinuous lateral load. Application ential equation for pined – pined, fixe eeams. Elastic Energy method –Appr r hinged – hinged column using ener UNIT-II . Buckling of cantilever column unde imation. Bars with varying cross sect	of trigono ed – fixed, roximate ca rgy approac er distribute tion.	ometr fixec alcul h. ed lo	ric solution $\frac{1}{2}$	eries, ee an ofcr 12 Deter	, Eu d fix itical 2 HO mina	ler's ed – load
severalconcentrated lo formulation using fourt pinned column. Buckling of frames and for a cantilever. Exact of Buckling of bar on elas of critical loads by succ	bads, (iii) cont th order different d continuous l critical load for stic foundation cessive approx	atinuous lateral load. Application ential equation for pined – pined, fixe weams. Elastic Energy method –Appr r hinged – hinged column using energy UNIT-II . Buckling of cantilever column under imation. Bars with varying cross sect Column subjected to non – conservat	of trigono ed – fixed, roximate ca rgy approac er distribute tion.	ometr fixec alcul h. ed lo	ric solution $\frac{1}{2}$	eries, ee an ofcr 12 Deter	, Eu d fix itical 2 HO mina g for	ler's ed – load UR ation rces.
severalconcentrated lo formulation using fourt pinned column. Buckling of frames and for a cantilever. Exact of Buckling of bar on elas of critical loads by succ Effect of shear force on	bads, (iii) cont th order different d continuous l critical load for stic foundation cessive approx n critical load.	atinuous lateral load. Application ential equation for pined – pined, fixe eeams. Elastic Energy method –Appr r hinged – hinged column using ener UNIT-II . Buckling of cantilever column unde imation. Bars with varying cross sect Column subjected to non – conservat UNIT-III	of trigono ed – fixed, roximate ca rgy approac er distribute tion. tive follow	alcul h. ed lo	ric solution ation ads. 1 d pul	eries ee an ofcr 12 Deter satin 12	, Eu d fix itical 2HO mina g for 2HO	ler's ed – loac UR ation rces.
severalconcentrated lo formulation using fourt pinned column. Buckling of frames and for a cantilever. Exact of Buckling of bar on elas of critical loads by succ Effect of shear force or Stability analysis by fi	bads, (iii) con th order differ d continuous l critical load for stic foundation cessive approx n critical load.	tinuous lateral load. Application ential equation for pined – pined, fixe weams. Elastic Energy method –Appr r hinged – hinged column using energ UNIT-II . Buckling of cantilever column under imation. Bars with varying cross sect Column subjected to non – conservat UNIT-III pproach–deviation of shape function	of trigono ed – fixed, roximate ca gy approac er distribute tion. tive follow	alcul h. ed lo er an	ric solution ation ads. 1 d pul ded 1	eries, ee an ofcr 12 Deter satin 12 Berno	, Eu d fix itical 2HO mina g for 2HO oulli-	ler's ed – load UR ation rces. UR –Eul
severalconcentrated lo formulation using fourt pinned column. Buckling of frames and for a cantilever. Exact of Buckling of bar on elas of critical loads by succ Effect of shear force on Stability analysis by fi beam element (lateral	bads, (iii) cont th order different d continuous l critical load for stic foundation cessive approx n critical load. nite element a and translation	atinuous lateral load. Application ential equation for pined – pined, fixe eeams. Elastic Energy method –Appr r hinged – hinged column using energ UNIT-II . Buckling of cantilever column under imation. Bars with varying cross sect Column subjected to non – conservat UNIT-III pproach–deviation of shape function on of) – element stiffness and elem	of trigono ed – fixed, roximate ca egy approac er distribute tion. tive followa n for a two nent geome	er an	ric solution 1 - from ation ads. 1 d pul ded 1 stiff	eries, ee an ofcr 12 Deter satin 12 Berno	, Eu d fix itical 2HO mina g for 2HO oulli- matr	ler's ed – load UR ation cces. UR -Eul ices
severalconcentrated lo formulation using fourt pinned column. Buckling of frames and for a cantilever. Exact of Buckling of bar on elas of critical loads by succ Effect of shear force or Stability analysis by fi beam element (lateral assembled stiffness and	ads, (iii) contraction of the order different of the order different of the order different of the order different of the order of the	atinuous lateral load. Application ential equation for pined – pined, fixe eeams. Elastic Energy method –Appr r hinged – hinged column using ener UNIT-II . Buckling of cantilever column unde imation. Bars with varying cross sect Column subjected to non – conservat UNIT-III pproach–deviation of shape function on of) – element stiffness and elem fness matrices for a discretized colum	of trigono ed – fixed, roximate ca gy approac er distribute tion. tive followe n for a two nent geome nn with diff	alcul h. ed lo er an o nod etric feren	ric solution l = fr ation ads. l d pul ded 1 stiffi t bou	eries, ee an ofcr 12 Deter satin 12 Berno ness .ndar	, Eu d fix itical 2HO mina g for 2HO oulli- matr y cor	ler's ed – load UR ation cces. UR -Eul ices aditio
severalconcentrated lo formulation using fourt pinned column. Buckling of frames and for a cantilever. Exact of Buckling of bar on elas of critical loads by succ Effect of shear force on Stability analysis by fi beam element (lateral assembled stiffness and – calculation of critica	ads, (iii) cont th order differ d continuous l critical load for stic foundation cessive approx n critical load. nite element a and translation l geometric sti l loads for a	atinuous lateral load. Application ential equation for pined – pined, fixe eeams. Elastic Energy method –Appr r hinged – hinged column using energent UNIT-II . Buckling of cantilever column under imation. Bars with varying cross sect Column subjected to non – conservat UNIT-III pproach–deviation of shape function on of) – element stiffness and elem finess matrices for a discretized colum liscretized (two elements) column (b	of trigono ed – fixed, roximate ca egy approac er distribute tion. tive followe n for a two nent geome nn with diff	alcul h. ed lo er an o nod etric feren puilt	ric solution 1 - from ation ads. 1 d pul ded 1 stiffort t bout in). 1	eries, ee an ofcr 12 Deter satin 12 Berne ness .ndar	, Eu d fix itical 2HO mina g for 2HO oulli- matr y cor	ler's ed – load UR ation cces. UR -Eul ices aditio
severalconcentrated lo formulation using fourt pinned column. Buckling of frames and for a cantilever. Exact of Buckling of bar on elas of critical loads by succ Effect of shear force on Stability analysis by fi beam element (lateral assembled stiffness and – calculation of critica	ads, (iii) cont th order differ d continuous l critical load for stic foundation cessive approx n critical load. nite element a and translation l geometric sti l loads for a	atinuous lateral load. Application ential equation for pined – pined, fixe eeams. Elastic Energy method –Apper r hinged – hinged column using energy UNIT-II . Buckling of cantilever column under imation. Bars with varying cross sect Column subjected to non – conservat UNIT-III pproach–deviation of shape function on of) – element stiffness and elem finess matrices for a discretized column liscretized (two elements) column (by ve degree of freedom) – symmetrical	of trigono ed – fixed, roximate ca egy approac er distribute tion. tive followe n for a two nent geome nn with diff	alcul h. ed lo er an o nod etric feren puilt	ric solution 1 - from ation ads. 1 d pul ded 1 stiffort t bout in). 1	eries, ee an ofcr 12 Deter satin 12 Berno ness ndar Buck ame.	, Eu d fix itical 2HO mina g for 2HO oulli- matr y cor ling	ler's ed – load UR ation cces. UR -Eul ices aditio of p
severalconcentrated lo formulation using fourt pinned column. Buckling of frames and for a cantilever. Exact of Buckling of bar on elas of critical loads by succ Effect of shear force or Stability analysis by fi beam element (lateral assembled stiffness and – calculation of critica jointed frames (maximu	ads, (iii) cont th order differ d continuous l critical load for stic foundation cessive approx n critical load. nite element a and translation geometric sti l loads for a um of two acti	tinuous lateral load. Application ential equation for pined – pined, fixe eeams. Elastic Energy method –Appr r hinged – hinged column using energent UNIT-II . Buckling of cantilever column under imation. Bars with varying cross sect Column subjected to non – conservat UNIT-III pproach–deviation of shape function on of) – element stiffness and elem finess matrices for a discretized column liscretized (two elements) column (to ve degree of freedom) – symmetrical UNIT-IV	of trigono ed – fixed, roximate ca rgy approac er distribute tion. tive followe n for a two nent geome nn with diff both ends t l single bay	alcul h. ed lo er an o nod etric feren puilt y port	ric solution 1 - from ation ation ads. 1 d pull ded 1 stiffor t bout in). 1 cal fra	eries, ee an ofcr 12 Deter satin 12 Berno ness ndar Buck ame. 12	, Eu d fix itical 2HO mina g for 2HO oulli- matr y cor ling 2HO	ler's ed – load UR tion Cces. UR -Eul ices aditic of pi
severalconcentrated lo formulation using fourt pinned column. Buckling of frames and for a cantilever. Exact of Buckling of bar on elass of critical loads by succ Effect of shear force or Stability analysis by fi beam element (lateral assembled stiffness and – calculation of critica jointed frames (maximu Lateral buckling of bea	ads, (iii) con- th order differ- d continuous l critical load for stic foundation cessive approx- n critical load. nite element a and translation l geometric sti l loads for a co- um of two actions ms-differentia	atinuous lateral load. Application ential equation for pined – pined, fixe eeams. Elastic Energy method –Apper r hinged – hinged column using energent UNIT-II . Buckling of cantilever column under imation. Bars with varying cross sect Column subjected to non – conservat UNIT-III pproach–deviation of shape function on of) – element stiffness and elem finess matrices for a discretized column liscretized (two elements) column (the ve degree of freedom) – symmetrical UNIT-IV al equation–pure bending–cantilever l	of trigono ed – fixed, roximate ca rgy approac er distribute tion. tive followe n for a two nent geome nn with diff both ends t l single bay beam with	alcul h. ed lo er an o nod etric feren ouilt r port	ric set l – fre ation ads. l ads. l d pul ded l stiffe t bou in). l cal fra oad—s	eries, ee an ofcr 12 Deter satin 12 Berno ness ndar Buck ame. 12	, Eu d fix itical 2HO mina g for 2HO oulli- matr y cor ling 2HO 2HO ysup	ler's ed – load URA ation cces. URA ices aditic of pi URA
severalconcentrated lo formulation using fourt pinned column. Buckling of frames and for a cantilever. Exact of Buckling of bar on elas of critical loads by succ Effect of shear force or Stability analysis by fi beam element (lateral assembled stiffness and – calculation of critica jointed frames (maximu Lateral buckling of bea beam of I section subje	ads, (iii) con- th order differ- d continuous l critical load for stic foundation cessive approx a critical load. nite element a and translation geometric sti l loads for a um of two action ms-differentia	tinuous lateral load. Application ential equation for pined – pined, fixe eeams. Elastic Energy method –Appr r hinged – hinged column using energent UNIT-II . Buckling of cantilever column under imation. Bars with varying cross sect Column subjected to non – conservat UNIT-III pproach–deviation of shape function on of) – element stiffness and elem finess matrices for a discretized column liscretized (two elements) column (to ve degree of freedom) – symmetrical UNIT-IV	of trigono ed – fixed, roximate ca gy approac er distribute tion. tive followe n for a two nent geome nn with diff both ends t l single bay beam with	alcul h. ed lo er an er an feren built tip lo y in J	ric s $\frac{1}{1 - \frac{1}{1}}$	eries, ee an ofcr 12 Deter satin 12 Berno ness indar Buck ame. 12 impl bend	, Eu d fix itical 2HO mina g for 2HO oulli- matr y cor ling 2HO ysup ing v	ler's ed – load UR ation cces. UR cces. UR ditic of pi UR porte
severalconcentrated lo formulation using fourt pinned column. Buckling of frames and for a cantilever. Exact of Buckling of bar on elas of critical loads by succ Effect of shear force or Stability analysis by fi beam element (lateral assembled stiffness and – calculation of critica jointed frames (maximu Lateral buckling of bea beam of I section subje plate forces (linear and	ads, (iii) cont th order different d continuous l eritical load for estic foundation cessive approx a critical load. nite element a and translation l geometric sti l loads for a contration um of two actions ms-differentiation contration - linear).	atinuous lateral load. Application ential equation for pined – pined, fixe beams. Elastic Energy method –Appr r hinged – hinged column using energe UNIT-II . Buckling of cantilever column under imation. Bars with varying cross sect Column subjected to non – conservat UNIT-III pproach–deviation of shape function on of) – element stiffness and element finess matrices for a discretized column liscretized (two elements) column (how degree of freedom) – symmetrical UNIT-IV I equation–pure bending–cantilever for states and sector of the sector of t	of trigono ed – fixed, roximate ca egy approac er distribute tion. tive followe n for a two nent geome nn with diff both ends t l single bay beam with	alcul h. ed lo er an o nod etric feren built tip lo y in j -unia	tic solution	eries, ee an ofcr Deter satin 12 Berno ness ndar Buck ame. 12 impl bend load	, Eu d fix itical 2HO mina g for 2HO oulli- matr y cor ling 2HO ysup ing v and t	ler's ed – load UR ation cces. UR -Eul ices aditio of p UR porte vith piaxi
severalconcentrated lo formulation using fourt pinned column. Buckling of frames and for a cantilever. Exact of Buckling of bar on elas of critical loads by succ Effect of shear force or Stability analysis by fi beam element (lateral assembled stiffness and – calculation of critica jointed frames (maximu Lateral buckling of bea beam of I section subje plate forces (linear and load. Buckling of un	ads, (iii) con- th order differ- d continuous l critical load for stic foundation cessive approx n critical load. nite element a and translation l geometric sti l loads for a um of two action ms-differentia cted to central non – linear). iformly comp	atinuous lateral load. Application ential equation for pined – pined, fixe eeams. Elastic Energy method –Apper r hinged – hinged column using energy UNIT-II . Buckling of cantilever column under imation. Bars with varying cross sect Column subjected to non – conservat UNIT-III pproach–deviation of shape function on of) – element stiffness and elem finess matrices for a discretized column liscretized (two elements) column (the ve degree of freedom) – symmetrical UNIT-IV Il equation–pure bending–cantilever for concentrated load. Expression for stan Buckling of simply supported rectan	of trigono ed – fixed, roximate ca gy approac er distribute tion. tive followe n for a two nent geome nn with diff both ends t l single bay beam with strain energy ngular plate- pported al	alcul h. ed lo er an o nod etric feren puilt tip lc y in J -unia ong	ation ation ads. 1 d pul ded 1 stiffi t bou in). 1 al fra pad—s plate axial two	eries, ee an ofcr 12 Deter satin 12 Berno ness ndar Buck ame. 12 impl bend load oppo	, Eu d fix itical 2HO mina g for 2HO oulli- matr y cor ling 2HO ysup ing v and t ossite	ler's ed – load UR ation cces. UR cces. UR of pi uR of pi UR side
severalconcentrated lo formulation using fourt pinned column. Buckling of frames and for a cantilever. Exact of Buckling of bar on elas of critical loads by succ Effect of shear force or Stability analysis by fi beam element (lateral assembled stiffness and – calculation of critica jointed frames (maximu Lateral buckling of bea beam of I section subje plate forces (linear and load. Buckling of un	ads, (iii) cont th order different d continuous l critical load for stic foundation cessive approx a critical load. nite element a and translation geometric sti l loads for a d um of two actions ms-differentiant cted to central non – linear). iformly compression	atinuous lateral load. Application ential equation for pined – pined, fixe eeams. Elastic Energy method –Apper r hinged – hinged column using energe UNIT-II . Buckling of cantilever column under imation. Bars with varying cross sect Column subjected to non – conservat UNIT-III pproach–deviation of shape function on of) – element stiffness and elem finess matrices for a discretized colum liscretized (two elements) column (to ve degree of freedom) – symmetrical UNIT-IV al equation–pure bending–cantilever la concentrated load. Expression for sta Buckling of simply supported rectan pressedrectangular plate simply sup-	of trigono ed – fixed, roximate ca gy approac er distribute tion. tive followe n for a two nent geome nn with diff both ends t l single bay beam with strain energy ngular plate- pported al	alcul h. ed lo er an o nod etric feren puilt tip lc y in J -unia ong	ation ation ads. 1 d pul ded 1 stiffi t bou in). 1 al fra pad—s plate axial two	eries, ee an ofcr 12 Deter satin 12 Berno ness ndar Buck ame. 12 impl bend load oppo	, Eu d fix itical 2HO mina g for 2HO oulli- matr y cor ling 2HO ysup ing v and t ossite	ler's ed – load UR ation ces. UR -Eul ices aditio of p UR porto vith piaxi sid

- Robert D Cook et.al, "Concepts and Applications of Finite Element Analysis"-3rd Edition, John Wiley and Sons, New York.
- S.Rajashekar, "Computations and Structural Mechanics"-Prentice Hall, India.
- Ray W Clough and J Penzien, "Dynamics of Structures" 2nd Edition, McGraw Hill, New Delhi
- H.Zeiglar, "Principles of Structural Stability"-Blaisdall Pu

Course Code	POS/C Os	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PS O1	PS O2	PS O3	PS O4
M18SE20	CO1	3	3	3	1	2		2	2	1		1	3	3	1	2
52	CO2	3	3	3	1	2		2	1	1		1	3	3	1	2
	CO3	3	3	3	1	2		2	1	1		1	3	3	1	2
	CO4	3	3	3	1	2		2	1	1		1	3	3	1	2

M18SE2061	RELIA	BILITY ANALYSIS AND DESIGN OF	L	Τ	P	C	Hrs
Duration: 16weeks		STRUCTURES	3	1	0	4	5
Internal Assessment:	50 Marks	Semester End Examination: 50 Marks (Min	nimu	m 20) Ma	rks)	
Prerequisite: Basic Co	oncepts of Pro	bability and Statistics					
COURSE OBJECT	IVES:Studer	nt will be able to learn					
• To learn basic	concepts of p	robability and statistics					
• To learn basic	concepts of ra	andom phenomena					
• To learn formu	lation of Matl	hematical Modeling using uncertainties					
• To learn about	simulation an	d particularly as a modeling tool					
COURSE OUTCOM	ME:After suc	cessful completion of this course the student wil	l be a	able t	o:		
		bability and statistics					
		dom phenomena					
		natical Modelling using uncertainties					
4. learnt about sir	nulation and p	barticularly as a modelling tool			14		TIT
Durling Data		UNIT-I				2HO	
		hical representation- Histogram, frequency puped data, measures of dispersion, measures of a				sures	s of
		ng a straight line, curve of the form $y = ab^x$ an	d nar	apole		effic	ient
-	elation: Fittin	is a straight line, curve of the formy $= ub$ and	u pui	aboli	a, Co		
correlation. Probability Concepts: I probability-interpretation	Random event on, probabilit	UNIT-II s-Sample space and events, Venn diagram and e y axioms, addition rule, multiplication rule, o	event	space	12 e, Me il pro	2HO easur	UR: esof
correlation. Probability Concepts: I probability-interpretation probability tree diagram Random variables:	Random event on, probabilit n, statistical ir Probability	UNIT-II as-Sample space and events, Venn diagram and events, addition rule, multiplication rule, ondependence, total probability theorem and Baye	event	space tiona eorer	12 e, Me Il pro n.	2HO easur	UR esof lity,
correlation. Probability Concepts: I probability-interpretation probability tree diagram	Random event on, probabilit n, statistical ir Probability	UNIT-II ss-Sample space and events, Venn diagram and e by axioms, addition rule, multiplication rule, o independence, total probability theorem and Baye mass function, probability density f	event condi e's th	space tiona eorer	12 e, Me il pro n. Ma	2HO easur obabi	UR esof lity, natic
correlation. Probability Concepts: I probability-interpretation probability tree diagram Random variables: expectation,Chebyshev	Random event on, probabilit n, statistical ir Probability 's theorem.	UNIT-II ss-Sample space and events, Venn diagram and e sy axioms, addition rule, multiplication rule, on dependence, total probability theorem and Baye mass function, probability density f UNIT-III	event condi e's th	space tiona eorer on,	12 e, Me il pro n. Ma 12	2HO easur obabi athem 2HO	UR esof lity, natic
correlation. Probability Concepts: I probability-interpretation probability tree diagram Random variables: expectation,Chebyshev	Random event on, probabilit n, statistical in Probability 's theorem. s: Discrete dis	UNIT-II ss-Sample space and events, Venn diagram and e by axioms, addition rule, multiplication rule, o independence, total probability theorem and Baye mass function, probability density f	event condi e's th	space tiona eorer on,	12 e, Me il pro n. Ma 12	2HO easur obabi athem 2HO	UR esof lity, natic
correlation. Probability Concepts: I probability-interpretation probability tree diagram Random variables: expectation,Chebyshev Probability distribution Normal, Log normal di	Random event on, probabilit n, statistical in Probability 's theorem. s: Discrete dis stributions.	UNIT-II ss-Sample space and events, Venn diagram and e sy axioms, addition rule, multiplication rule, on dependence, total probability theorem and Baye mass function, probability density f UNIT-III	event condi e's th function	space tiona eorer on,	12 e, Me il pro n. Ma 12	2HO easur obabi athem 2HO ibuti	UR esof lity, natic UR
correlation. Probability Concepts: I probability-interpretation probability tree diagram Random variables: expectation,Chebyshev Probability distribution Normal, Log normal di Reliability Analysis:	Random event on, probabilit n, statistical in Probability 's theorem. s: Discrete dis stributions. Measures	UNIT-II is-Sample space and events, Venn diagram and events, addition rule, multiplication rule, on adependence, total probability theorem and Baye mass function, probability density f UNIT-III stributions- Binomial and poison distributions, C	event condi e's th function Contin	space tiona eorer on, nuous rel	12 e, Ma il pro n. Ma 12 sdistr	2HO easur obabi uthem 2HO ibuti	UR esof lity, natic UR ons-
correlation. Probability Concepts: I probability-interpretation probability tree diagram Random variables: expectation,Chebyshew Probability distribution Normal, Log normal di Reliability Analysis: performancefunction a	Random event on, probabilit n, statistical in Probability 's theorem. s: Discrete dis stributions. Measures nd limiting st	UNIT-II cs-Sample space and events, Venn diagram and explanations, addition rule, multiplication rule, on dependence, total probability theorem and Baye mass function, probability density f UNIT-III UNIT-III stributions- Binomial and poison distributions, C of reliability-factor of safety, safety ma	event condi e's th function Contin	space tiona eorer on, nuous rel nt M	12 e, Ma il pro n. Ma 12 sdistr iabili ethoo	2HO easur bbabi athen 2HO ibuti ibuti	URa esof lity, natic URa ons- inde
correlation. Probability Concepts: I probability-interpretation probability tree diagram Random variables: expectation,Chebyshew Probability distribution Normal, Log normal di Reliability Analysis: performancefunction a	Random event on, probabilit n, statistical in Probability 's theorem. s: Discrete dis stributions. Measures nd limiting st	UNIT-II as-Sample space and events, Venn diagram and explored and explored and explored and probability theorem and Baye mass function, probability density f MIT-III stributions- Binomial and poison distributions, C of reliability-factor of safety, safety matate. Reliability Methods-First Order Second M	event condi e's th function Contin	space tiona eorer on, nuous rel nt M	12 e, Ma il pro n. Ma sdistr iabili ethoo Lind'	2HO easur bbabi athen 2HO ibuti ibuti	UR esof lity, natic UR ons- inde DSM
correlation. Probability Concepts: I probability-interpretation probability tree diagram Random variables: expectation,Chebyshev Probability distribution Normal, Log normal di Reliability Analysis: performancefunction a Point Estimate Method System reliability: Influ	Random event on, probabilit n, statistical in Probability 's theorem. s: Discrete dis stributions. Measures nd limiting st (PEM), and A	UNIT-II cs-Sample space and events, Venn diagram and explanations, addition rule, multiplication rule, on dependence, total probability theorem and Baye mass function, probability density f UNIT-III tributions- Binomial and poison distributions, C of reliability-factor of safety, safety matter. Reliability Methods-First Order Second Method	event condi e's th function Contin argin, fomes (Haso	space tiona eorer on, nuous rel nt M ofer-I ems-	12 e, Ma l pro n. Ma 12 sdistr iabili ethoo Lind' 12 serie	2HO easur bbabi athem 2HO ibuti ibuti ity d (FC s me 2HO	UR esof lity, natic UR ons- inde DSM thoo UR allel
correlation. Probability Concepts: I probability-interpretation probability tree diagram Random variables: expectation,Chebyshev Probability distribution Normal, Log normal di Reliability Analysis: performancefunction a Point Estimate Method System reliability: Influence and combined systems reliability Simulation Techniques	Random event on, probabilit n, statistical in Probability 's theorem. s: Discrete dis stributions. Measures nd limiting st (PEM), and A uence of corres s, Uncertainty	UNIT-II cs-Sample space and events, Venn diagram and events, addition rule, multiplication rule, on dependence, total probability theorem and Baye mass function, probability density f UNIT-III stributions- Binomial and poison distributions, C of reliability-factor of safety, safety matter. Reliability Methods-First Order Second M Advanced First Order Second Moment Method UNIT-IV elation coefficient, redundant and non-redundant	event condi e's th uncti- Contir argin, fome (Haso t syst s, Ba	space tiona eorer on, nuous rel nt M ofer-I ems- yesia accur	12 e, Ma il pro n. Ma 12 sdistr iabili ethod Lind' serie n rev	2HO easur bbabi athem 2HO ibuti ity d (FC s me 2HO s,par visio	UR esof lity, natic UR ons- inde DSM thoc UR allel n of
correlation. Probability Concepts: I probability-interpretation probability tree diagram Random variables: expectation, Chebyshew Probability distribution Normal, Log normal di Reliability Analysis: performancefunction a Point Estimate Method System reliability: Influence and combined systems reliability Simulation Techniquess of random numbers- ran	Random event on, probabilit n, statistical in Probability 's theorem. s: Discrete dis stributions. Measures nd limiting st (PEM), and A uence of corres s, Uncertainty : Monte Carlo ndom numbers	UNIT-II cs-Sample space and events, Venn diagram and events, addition rule, multiplication rule, on dependence, total probability theorem and Baye mass function, probability density f mass function, probability density f UNIT-III stributions- Binomial and poison distributions, C of reliability-factor of safety, safety matter. Reliability Methods-First Order Second M Advanced First Order Second Moment Method of UNIT-IV elation coefficient, redundant and non-redundant of in reliability assessments- Confidence limits o simulation- Statistical experiments, sample size	event condi e's th uncti- Contir argin, fome (Haso t syst s, Ba	space tiona eorer on, nuous rel nt M ofer-I ems- yesia accur	12 e, Ma il pro n. Ma 12 sdistr iabili ethod Lind' serie n rev	2HO easur bbabi athem 2HO ibuti ity d (FC s me 2HO s,par visio	UR esof lity, natic UR ons- inde DSM thoc UR allel n of

- Ang, A. H. S., and Tang, W. H. (1984). "Probability concepts in engineering planning and design"-Volume –I, John Wiley and sons, Inc, New York.
- Ang, A. H. S., and Tang, W. H. (1984). "Probability concepts in engineering planning and design"-Volume –II, John Wiley and sons, Inc, New York.
- Milton, E. Harr (1987). "Reliability based design in civil engineering"- Mc Graw Hill book Co.
- Nathabdndu, T., Kottegoda, and Renzo Rosso (1998). Statistics, "Probability and reliability for Civiland Environmental Engineers"- Mc Graw Hill international edition, Singapore.
- Achintya Haldar, and Sankaran Mahadevan (2000). "Probability, Reliability and Statistical methodsin Engineering design"- John Wiley and Sons. Inc.
- Thoft-christensen, P., and Baker, M., J., (1982), "Structural reliability theory and its applications"-Springer-Verlag, Berlin, NewYork.
- Thoft-christensen, P., and Murotsu, Y. (1986). "Application of structural systems reliability theory"-Springer-Verlag, Berlin, NewYork.

Course Code	POS/C Os	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PS O1	PS O2	PS 03	PS O4
M18SE20	CO1	3	1	1		2	1	2	1				2	2		1
61	CO2	3	2	2		2	1	2	1				2	2	2	1
	CO3	3	2	2		2	1	2	1				2	2	2	1
	CO4	3	2	2		2	1	2	1				2	2	2	1

M18SE2062	ADVANCED DESIGN O		L	Τ	Р	С	Hrs
Duration: 16weeks	CONCRE	ТЕ	3	1	0	4	5
Internal Assessment:	0 Marks Semester End Exa	mination: 50 Marks (Min	nimu	m 20) Ma	rks)	
Prerequisite: Design o	Prestressed Concrete Structures						
COURSE OBJECT	ES: Student will be able to le	arn					
To develop anTo study the de	owledge about behaviour, analyst inderstanding of the design of cont ign of anchorage zones, composit ar and Torsion resistance of prest	tinuous beams and simple pate beams, analysis and design	oortal	l fran	nes.		
COURSE OUTCOM	Е:						
After successful com	letion of this course the studen	nt will be able to:					
	the analysis and design of pre-str		imns	and s	slabs		
	e zones and composite pre-stresse						
	oncepts and techniques of precas and the shear and Torsion resista			ign pi	recas	t elei	ment
	UNIT-I				12	2HO	
	01111-1				14		
investigations on Anch zone reinforcement.	es in post-tensioned members: rage zone stresses, Magnel and G	uyon's Methods, Compara	tive A	Analy	in e /sis, .	end Anch	bloc
investigations on Anch zone reinforcement. Shear and torsion res	es in post-tensioned members: rage zone stresses, Magnel and G tance: Shear and principal stre Design of reinforcement for torsic	uyon's Methods, Compara esses, ultimate shear resi	tive A	Analy	in e /sis, /	end Anch n of	bloc noraş she
investigations on Anch zone reinforcement. Shear and torsion res reinforcement, Torsion.	es in post-tensioned members: age zone stresses, Magnel and G tance: Shear and principal stre Design of reinforcement for torsic UNIT-II	uyon's Methods, Compara esses, ultimate shear resi on.	tive A	Analy ce, d	in e /sis, / esigr	end Anch n of 2HO	bloc norag she
investigations on Anch zone reinforcement. Shear and torsion res reinforcement, Torsion Tension members: Intro	es in post-tensioned members: rage zone stresses, Magnel and G tance: Shear and principal stre Design of reinforcement for torsic	uyon's Methods, Compara esses, ultimate shear resion. prication process, analysis, o	tive A	Analy ce, d	in e /sis, / esigr	end Anch n of 2HO	bloc norag she
investigations on Anch zone reinforcement. Shear and torsion res reinforcement, Torsion. Tension members: Intro Cylindrical containers-	es in post-tensioned members: age zone stresses, Magnel and G tance: Shear and principal stre Design of reinforcement for torsic UNIT-II uction, Ties, Pressure pipes – fab	uyon's Methods, Compara esses, ultimate shear resion. prication process, analysis, o design and specifications.	tive A	Analy xe, d	in e /sis, / esigr 12 l spec	end Anch n of 2 HO cifica	bloc norag she UR ation
investigations on Anch zone reinforcement. Shear and torsion res reinforcement, Torsion. Tension members: Intro Cylindrical containers- Compression members: specifications. Composite beams: Int	es in post-tensioned members: age zone stresses, Magnel and G tance: Shear and principal stre Design of reinforcement for torsic UNIT-II uction, Ties, Pressure pipes – fab onstruction techniques, analysis, o	uyon's Methods, Compara esses, ultimate shear resion. prication process, analysis, o design and specifications. mns, long columns, biaxiall eams, analysis for stresse	tive A desig	Analy xe, d	in e /sis, / esigr 12 l spec	end Anch n of 2HO cifica	bloc noraş she <u>UR</u> ation
investigations on Anch zone reinforcement. Shear and torsion res reinforcement, Torsion. Tension members: Intro Cylindrical containers- Compression members: specifications. Composite beams: Int serviceability limit state	es in post-tensioned members: age zone stresses, Magnel and G tance: Shear and principal stre Design of reinforcement for torsic UNIT-II uction, Ties, Pressure pipes – fab onstruction techniques, analysis, o ntroduction, Columns, short colur duction, types of composite be Design for flexural and shear stre UNIT-III	uyon's Methods, Compara esses, ultimate shear resion. prication process, analysis, o design and specifications. mns, long columns, biaxiall eams, analysis for stresses ength.	tive 2 distance desig y load s, dif	Analy ce, d n and ded c	in e vsis, . esigr 12 1 spec olum ntial	end Anch 1 of 2HO cifica shrin shrin	bloc noraş she UUR ation Desiş nkag
investigations on Anch zone reinforcement. Shear and torsion res reinforcement, Torsion. Tension members: Intro Cylindrical containers- Compression members: specifications. Composite beams: Int serviceability limit state Statically indeterminate indeterminate structure theorem, Ultimate load	es in post-tensioned members: age zone stresses, Magnel and G tance: Shear and principal stre Design of reinforcement for torsic UNIT-II uction, Ties, Pressure pipes – fab onstruction techniques, analysis, o ntroduction, Columns, short colur duction, types of composite be Design for flexural and shear stree UNIT-III structures: Introduction, Advantage methods of analysis for secon nalysis, Design of continuous bea	uyon's Methods, Compara esses, ultimate shear resion. orication process, analysis, o design and specifications. mns, long columns, biaxiall eams, analysis for stresses ength. ges of continuous members dary moments, concordan ams and portal frames.	tive A desig desig y load s, dif , effe t cab	Analy xe, d n and ded c fferen $\overline{ct of}$ ble primesults (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	in e vsis, . esigr 12 l spec olum ntial 12 pre-s	end Anch 1 of 2HO cifica shrin shrin 2HO stress e, Gu	bloc noraş she UR ation Desiş nkag UR sing ıyon
investigations on Anch zone reinforcement. Shear and torsion res reinforcement, Torsion. Tension members: Intro Cylindrical containers- Compression members: specifications. Composite beams: Int serviceability limit state Statically indeterminate indeterminate structure theorem, Ultimate load Slab and grid floors: T	es in post-tensioned members: age zone stresses, Magnel and G tance: Shear and principal stre Design of reinforcement for torsic UNIT-II uction, Ties, Pressure pipes – fab onstruction techniques, analysis, o ntroduction, Columns, short colur duction, types of composite be Design for flexural and shear stre UNIT-III structures: Introduction, Advantag methods of analysis for secon nalysis, Design of continuous bea	uyon's Methods, Compara esses, ultimate shear resion. orication process, analysis, o design and specifications. mns, long columns, biaxiall eams, analysis for stresses ength. ges of continuous members dary moments, concordan ams and portal frames.	tive A desig desig y load s, dif , effe t cab	Analy xe, d n and ded c fferen $\overline{ct of}$ ble primesults (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	in e vsis, . esigr 12 l spec olum ntial 12 pre-s	end Anch 1 of 2HO cifica shrin shrin 2HO stress e, Gu	bloc norag she UR ation Desig nkag UR sing : yon
investigations on Anch zone reinforcement. Shear and torsion res reinforcement, Torsion. Tension members: Intro Cylindrical containers- Compression members: specifications. Composite beams: Int serviceability limit state Statically indeterminate indeterminate structure theorem, Ultimate load Slab and grid floors: T	es in post-tensioned members: age zone stresses, Magnel and G tance: Shear and principal stre Design of reinforcement for torsic UNIT-II uction, Ties, Pressure pipes – fab onstruction techniques, analysis, o ntroduction, Columns, short colur duction, types of composite be Design for flexural and shear stree UNIT-III structures: Introduction, Advantage methods of analysis for secon nalysis, Design of continuous bea	uyon's Methods, Compara esses, ultimate shear resion. orication process, analysis, o design and specifications. mns, long columns, biaxiall eams, analysis for stresses ength. ges of continuous members dary moments, concordan ams and portal frames.	tive A desig desig y load s, dif , effe t cab	Analy xe, d n and ded c fferen $\overline{ct of}$ ble primesults (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	in e /sis, . esigr 12 l spec olum ntial 12 pre-s rofile	end Anch 1 of 2HO cifica shrin shrin 2HO stress e, Gu	bloc noraş she UR ation Desiş nkag UR sing ayon
investigations on Anch zone reinforcement. Shear and torsion res- reinforcement, Torsion, Tension members: Intro Cylindrical containers- Compression members: specifications. Composite beams: Int serviceability limit state Statically indeterminate indeterminate structure theorem, Ultimate load Slab and grid floors: T stressing tendons, Anal	es in post-tensioned members: age zone stresses, Magnel and G tance: Shear and principal stre Design of reinforcement for torsic UNIT-II uction, Ties, Pressure pipes – fab onstruction techniques, analysis, on ntroduction, Columns, short colur duction, types of composite be Design for flexural and shear stre UNIT-III structures: Introduction, Advantage methods of analysis for secon nalysis, Design of continuous bear pes of floor slabs, Design of one sis and design of grid floors.	uyon's Methods, Compara esses, ultimate shear resion. orication process, analysis, o design and specifications. mns, long columns, biaxiall eams, analysis for stresses ength. ges of continuous members dary moments, concordan ams and portal frames. e way, two way and flat s	tive A desig desig y load s, dif , effe t cab	Analy xe, d n and ded c fferen ct of ble pr Distr	in e //sis, . esigr 12 l spec olum ntial pre-s rofile	end Anch 1 of 2HO cifica ans, I shrin 2HO stress e, Gu ion c 2HO	bloc noraş she UR ation Desiş nkag UR sing nyon

REFERENCE BOOKS

- Design of Prestressed concrete structures Lin T.Y. and H. Burns- John Wiley & Sons, 1982.
- Prestressed Concrete- N. Krishna Raju Tata McGraw Hill, 3rd edition, 1995.
- Prestressed Concrete Structures- P. Dayaratnam Oxford & IBH, 5th Edition, 1991.
- Prestressed Concrete- G.S. Pandit and S.P. Gupta CBS Publishers, 1993.
- Prestressed concrete- N. Rajagopalan; Narosa Publishing House.2nd edition, 2005.
- Design of Prestressed Concrete- A. Nilson; John Willey & Sons.2nd edition, 1987.
- IS : 1343 : 1980.

Course Code	POS/C Os	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PS O1	PS O2	PS O3	PS O4
M18SE20	CO1	3	1	2		2		2	2	1		1	3	1	3	2
62	CO2	3		2		2		2	2	1		1	3	1	3	2
	CO3	3		2		2		2	2	1		1	3	1	3	2
	CO4	3		2		2		2	2	1		1	3	1	3	2

Mapping of Course Outcomes with programme Outcomes

Μ	18SE2070	STRUCTI	IRAL FNCINFFDI	NG LABORATORY-I		Τ	P	C	Hrs
Durat	ion: 16weeks	SIRUCIO		UG LADORATORI-I	0	0	4	4	3
Interna	al Assessment:	50 Marks	Semester End Exam	mination: 50 Marks (I	/linim	um 2	0 Ma	arks)	
Prereq	uisite: Structura	al analysis and	design						
COUR	RSE OBJECT	IVES:Studen	t will be able to learn						
1.	To impart STA	AD PRO and	ETABS software know	wledge					
2.	To make them	aware differen	nt tools in these two s	oftware					
3.	To analyze and	design through	gh STAAD PRO						
4.	To analyze and	design throug	gh ETABS						
COUF	RSE OUTCOM	IE: After suce	cessful completion of	this course the student	vill be	able	to:		
1.	Gained sufficie	ent knowledge	of the software						
2.	Is able to analy	ze and design	the structural composition	nents					
3.	Is able to design	n through ST.	AAD PRO						
4.	Is able to desig	gn through E	ETABS						
		EXP	ERIMENTS TO BI	E CARRIED OUT					
	D PRO			-1	D 1'.			· 1-	4
1.				lating Shear Force and	Benair	ig Mo	omen	t van	les 1
2	various support	• •		al Madel Conception	Cuesti	~ NI~	dee (- 14-	
2.	Select Menu	o-ordinate Sy	stems, Global VS Loc	al Model Generation,	Creatin	ig No	des d	x Me	embe
3.		Toola Conno	at Daama Alana Stra	tch Selected Members,	Intorco	at Sal	ootod	Ma	mha
5.	-		-	, Break Beams at Selec					
	by using Struct		-	, Dieak Deams at Selee			Jicat	ing n	1000
4.	• •		•	fication, Member Off	et M	ateria	al Sn	ecifi	catic
	•• •			Load, Adding Self we		utern	a op	conn	cuil
5.	• •			orce and Moment, Cond	•	d Fo	rce ai	nd M	ome
01				in STAAD.PRO, Colu					
ETAB	S								
1.	Basics about th	e ETABS.							
2.	Introduction to	various comr	nands of ETABS and	their applications in det	ail.				
3.	2D model, anal	lysis and desig	gn for Trusses, Beams	and Frames					
4.		•	eel and RC Buildings						
5.	Earthquake load	d application	to RC and steel struct	ures along with the desi	gn.				
6.	Members group	ping							
7.	Design Groupin	ng in Steel str	uctures						
8.	Application of	different build	ling codes in the desig	gn of concrete and steel	structu	res			
DEED									
кн.НН	RENCE BOO Manual of STA								
1	Vianual of NTA								
1.	Manual of ETA								

Course Code	POS/C Os	P 01	P 02	Р О3	Р 04	Р О5	P 06	Р 07	P 08	Р 09	PO 10	PO 11	PS O1	PS O2	PS O3	PS O4
M18SE20	CO1	2	3	3	2	3	1		1	1		1	3	3	3	2
70	CO2	2	3	3	2	3	1		1	1		1	3	3	3	2
	CO3	2	3	3	2	З	1		1	1		1	3	3	3	2
	CO4	2	3	3	2	3	1		1	1		1	3	3	3	2

M18SE3010	ROAI	DS AND BUILDING STRUCTURES	L	Τ	P	С	Hr
Duration:16weeks			3	1	0	4	5
Internal Assessment:	50 Marks	Semester End Examination: 50 Marks (M	inimu	m 20	Ma	rks)	
COURSE OBJECT	IVE: Studen	t will be able to learn					
1. About traffic charac	teristics and c	ontrol over the vehicles.					
2. The importance of h	ighway geom	etric design and drainage systems.					
3. Understand the build	ding planning	and Bye-Laws.					
4. Different aspects of	building const	truction.					
COURSE OUTCON	ME: After suc	ccessful completion of this course the student v	ill be a	able t	0:		
1: Describe about traff	ic characterist	ics and control over the vehicles.					
2: Provide conceptual	details of high	way geometric design and drainage systems					
3: Describe building pl	lanning and B	ye-Laws.					
4: Provide different asp	pects of buildi	ng construction.					
		UNIT-I	12	ноі	JRS		
Traffic Characteristic	cs: Objectives	and scope of traffic engineering. Components	of roa	d traf	fic: t	he ve	ehic
driver and road. Road	user character	istics: human and vehicular characteristics.					
Traffic Regulation a	nd Control: I	Driver, vehicle, traffic flow and general regulat	ons a	nd	contr	ol. 7	Fraf
fruine Regulation a					conti		I I uI
_		ngs, islands and signals.			conti		I I UI
Control Devices: traffi Elements of Highwa surface characteristics,	c signs, marki y Geometric , width conside	ngs, islands and signals. UNIT-II Design:Design controls and criteria.Cross S erations for various components of cross sectio	12 ection	HOU Elem ents,	U RS ients: right	Pav of w	vem vay.
Control Devices: traffi Elements of Highwa surface characteristics,	c signs, marki y Geometric , width conside Objects and re	ngs, islands and signals. UNIT-II Design: Design controls and criteria.Cross Section rations for various components of cross section quirements of highway drainage. Surface drain	12 ection	HOU Elem ents,	U RS ients: right	Pav of w	vem vay.
Control Devices: traffi Elements of Highwa surface characteristics, Highway Drainage: (c signs, marki y Geometric , width conside Objects and re	ngs, islands and signals. UNIT-II Design: Design controls and criteria.Cross Section rations for various components of cross section quirements of highway drainage. Surface drain	12 ection n eleme age sy	HOU Elem ents,	U RS ients: right s – a	Pav of w	vem vay.
Control Devices: traffi Elements of Highwa surface characteristics, Highway Drainage: (design. Sub-surface dra	c signs, marki y Geometric , width conside Objects and re ainage system	ngs, islands and signals. UNIT-II Design: Design controls and criteria.Cross S erations for various components of cross sectio quirements of highway drainage. Surface drain s types and design.	12 ection n eleme age sy	HOU Elem ents, stem	U RS ients: right s – a U RS	Pav of w nalys	vem vay. sis a
Control Devices: traffi Elements of Highwa surface characteristics, Highway Drainage: C design. Sub-surface dra Building Planning: Ir	c signs, marki y Geometric , width conside Objects and re ainage system	ngs, islands and signals. UNIT-II Design:Design controls and criteria.Cross S erations for various components of cross sectio quirements of highway drainage. Surface drain s types and design. UNIT-III	12 ection n elema age sy 12 s of R	HOU Elem ents, stem HOU eside	U RS ients: right s – a U RS ential	Pav of w nalys Buil	vem vay. sis a
Control Devices: traffi Elements of Highwa surface characteristics, Highway Drainage: C design. Sub-surface dra Building Planning: Ir Basic Concepts of B	c signs, marki y Geometric , width conside Dbjects and re ainage system ntroduction, T uilding Eleme	ngs, islands and signals. UNIT-II Design:Design controls and criteria.Cross S erations for various components of cross sectio quirements of highway drainage. Surface drain s types and design. UNIT-III Types of Buildings Based on Occupancy, Type	12 ection age sy 12 s of R e Buil	HOU Elem ents, stem HOU eside	U RS ients: right s – a U RS ential Tec	Pav of w nalys Buil	vem vay. sis a ldin ues
Control Devices: traffi Elements of Highwa surface characteristics, Highway Drainage: C design. Sub-surface dra Building Planning: Ir Basic Concepts of B Construction, Construct	c signs, marki y Geometric , width conside Dbjects and re ainage system ntroduction, T uilding Eleme ction Manage	ngs, islands and signals. UNIT-II Design:Design controls and criteria.Cross S erations for various components of cross section quirements of highway drainage. Surface drain s types and design. UNIT-III Types of Buildings Based on Occupancy, Type ents, Methods of Construction, Cost-effective	12 ection age sy 12 s of R e Buil al Bui	HOU Elem ents, stem HOU eside Iding Iding	U RS nents: right s – a U RS ential Tec s, In	Pav of w nalys Buil hniqu	vem vay. sis a ldin ues nce
Control Devices: traffi Elements of Highwa surface characteristics, Highway Drainage: C design. Sub-surface dra Building Planning: Ir Basic Concepts of B Construction, Construct	c signs, marki y Geometric , width conside Dbjects and re ainage system ntroduction, T uilding Eleme ction Manage lanning, Orier	ngs, islands and signals. UNIT-II Design:Design controls and criteria.Cross S erations for various components of cross sectio quirements of highway drainage. Surface drain s types and design. UNIT-III Types of Buildings Based on Occupancy, Type ents, Methods of Construction, Cost-effective ment Techniques, Site Selection for Resident thation of Building , Principles of Building Plan	12 ection age sy 12 s of R e Buil al Bui	HOU Elem ents, stem HOU eside Iding Iding	U RS nents: right s – a U RS ential Tec s, In	Pav of w nalys Buil hniqu	vem vay. sis a ldin ues nce
Control Devices: traffi Elements of Highwa surface characteristics, Highway Drainage: C design. Sub-surface dra Building Planning: Ir Basic Concepts of B Construction, Construe Climate on Building P	c signs, marki y Geometric , width conside Dbjects and re ainage system ntroduction, T uilding Eleme ction Manage lanning, Orier	ngs, islands and signals. UNIT-II Design:Design controls and criteria.Cross S erations for various components of cross sectio quirements of highway drainage. Surface drain s types and design. UNIT-III Types of Buildings Based on Occupancy, Type ents, Methods of Construction, Cost-effective ment Techniques, Site Selection for Resident thation of Building , Principles of Building Plan	12 ection age sy 12 s of R e Buil al Bui uning ,	HOU Elem ents, stem HOU eside Iding Iding	U RS right s – a U RS ential Tec s, In ding	Pav of w nalys Buil hniqu nflue bye-l	vemovay. sis a ldin ues
Control Devices: traffi Elements of Highwa surface characteristics, Highway Drainage: C design. Sub-surface dra Building Planning: Ir Basic Concepts of B Construction, Construct Climate on Building Planning of Residentia	c signs, marki y Geometric , width conside Dbjects and re ainage system ntroduction, T uilding Eleme ction Manage lanning, Orier	ngs, islands and signals. UNIT-II Design:Design controls and criteria.Cross S erations for various components of cross sectio quirements of highway drainage. Surface drain s types and design. UNIT-III Types of Buildings Based on Occupancy, Type ents, Methods of Construction, Cost-effective ment Techniques, Site Selection for Resident nation of Building , Principles of Building Plan- uilding Services . UNIT-IV	12 ection age sy 12 s of R e Buil al Bui uning ,	HOU Elem ents, stem HOU eside ding lding Build	U RS right s – a U RS ential Tec s, In ding	Pav of w nalys Buil hniqu nflue	vemovay. sis a ldin ues
Control Devices: traffi Elements of Highwa surface characteristics, Highway Drainage: C design. Sub-surface dra Building Planning: Ir Basic Concepts of B Construction, Construct Climate on Building P Planning of Residentia Building Construct	c signs, marki y Geometric , width conside Dbjects and re ainage system ntroduction, T uilding Eleme ction Manage lanning, Orier l Buildings, B	ngs, islands and signals. UNIT-II Design:Design controls and criteria.Cross S erations for various components of cross sectio quirements of highway drainage. Surface drain s types and design. UNIT-III Types of Buildings Based on Occupancy, Type ents, Methods of Construction, Cost-effective ment Techniques, Site Selection for Resident nation of Building , Principles of Building Plan- uilding Services . UNIT-IV	12actionall elementage sy12s of Rall Builall Builaning ,12Stone	HOU Elem ents, stems HOU eside Iding Iding Build Build	JRS reints: right s – a JRS nitial Tec s, li ding JRS	Pav of w nalys Buil hniqu nflue bye-l	vemovay. vay. sis a ldin ues nce Law Br
Control Devices: traffi Elements of Highway surface characteristics, Highway Drainage: C design. Sub-surface dra Building Planning: Ir Basic Concepts of B Construction, Construct Climate on Building Planning of Residentia Building Construct Masonry,Partitions,Lir	c signs, marki y Geometric , width conside Objects and re ainage system ntroduction, T uilding Eleme ction Manage lanning, Orier l Buildings, B ion:Foundation ntels, Stairs, D	ngs, islands and signals. UNIT-II Design:Design controls and criteria.Cross S erations for various components of cross sectio quirements of highway drainage. Surface drain s types and design. UNIT-III Types of Buildings Based on Occupancy, Type ents, Methods of Construction, Cost-effective ment Techniques, Site Selection for Resident intation of Building , Principles of Building Plan- uilding Services . UNIT-IV ons, Shallow and Deep Foundations,	12 ection age sy 12 s of R e Buil al Bui ning , 12 Stone oring ,	HOU Elem ents, stem HOU eside Iding Iding Iding Build HOU M Root	JRS ients: right s – a JRS ntial Tec s, Ii ding JRS ason fs, Pc	Pav of w nalys Buil hniqu nflue bye-l	vem vay. sis a ldin ues nce Law Br
Control Devices: traffi Elements of Highway surface characteristics, Highway Drainage: C design. Sub-surface dra Building Planning: Ir Basic Concepts of B Construction, Construct Climate on Building Planning of Residentia Building Construct Masonry,Partitions,Lir	c signs, marki y Geometric , width conside Objects and re ainage system ntroduction, T uilding Eleme ction Manage lanning, Orier l Buildings, B ion:Foundation ntels, Stairs, D	ngs, islands and signals. UNIT-II Design:Design controls and criteria.Cross Section erations for various components of cross section quirements of highway drainage. Surface drain s types and design. UNIT-III Types of Buildings Based on Occupancy, Type ents, Methods of Construction, Cost-effective ment Techniques, Site Selection for Resident tation of Building , Principles of Building Plan- uilding Services . UNIT-IV ons, Shallow and Deep Foundations, oors, Windows And Ventilators, Floors And Flo	12 ection age sy 12 s of R e Buil al Bui ning , 12 Stone oring ,	HOU Elem ents, stem HOU eside Iding Iding Iding Build HOU M Root	JRS ients: right s – a JRS ntial Tec s, Ii ding JRS ason fs, Pc	Pav of w nalys Buil hniqu nflue bye-l	vem vay. sis a ldin ues nce Law Br
Control Devices: traffi Elements of Highwa surface characteristics, Highway Drainage: C design. Sub-surface dra Building Planning: In Basic Concepts of B Construction, Construct Climate on Building P Planning of Residentia Building Construct Masonry,Partitions,Lin Plastering , Painting, V REFERENCE 1. Khanna, S.K.,	c signs, marki y Geometric , width conside Dbjects and re ainage system ntroduction, T uilding Eleme ction Manage lanning, Orier l Buildings, B ion:Foundation ntels, Stairs, D Justo, C.E.G.	ngs, islands and signals. UNIT-II Design:Design controls and criteria.Cross Section erations for various components of cross section quirements of highway drainage. Surface drain s types and design. UNIT-III Types of Buildings Based on Occupancy, Type ents, Methods of Construction, Cost-effective ment Techniques, Site Selection for Resident tation of Building , Principles of Building Plan- uilding Services . UNIT-IV ons, Shallow and Deep Foundations, oors, Windows And Ventilators, Floors And Flo	12 ection age sy 12 es of R e Buil al Bui ning , 12 Stone oring , in Bu	HOU Elem ents, stems HOU eside Iding Iding Build M Root ilding	JRS ients: right s – a JRS ntial Tec s, Ii ding JRS ason fs, Pc gs.	Pav of w nalys Buil hniqu nflue bye-l ry, pintin	rem vay. sis a ldin ues nce Law Br ag A
Control Devices: traffi Elements of Highway surface characteristics, Highway Drainage: C design. Sub-surface dra Building Planning: Ir Basic Concepts of B Construction, Construct Climate on Building P Planning of Residentia Building Construct Masonry,Partitions,Lir Plastering , Painting, V REFERENCE 1. Khanna, S.K., Roorkee - 2014	c signs, marki y Geometric , width conside Dbjects and re ainage system ntroduction, T uilding Eleme ction Manage lanning, Orier l Buildings, B ion:Foundation ntels, Stairs, D /arnishing And Justo, C.E.G. 4.	ngs, islands and signals. UNIT-II Design:Design controls and criteria.Cross S erations for various components of cross sectio quirements of highway drainage. Surface drain s types and design. UNIT-III Types of Buildings Based on Occupancy, Type ents, Methods of Construction, Cost-effective ment Techniques, Site Selection for Resident thation of Building , Principles of Building Plan- building Services . UNIT-IV ons, Shallow and Deep Foundations, oors, Windows And Ventilators,Floors And Flood d Distempering, Etc. Acoustics, Fire Protection , and Veeraragavan, A., 'Highway Engineer	12 ection age sy 12 s of R e Buil al Bui ning , 12 Stone oring , in Bu	HOU Elem ents, stems HOU eside Iding Iding Build M Root ilding	JRS reints: right s – a JRS utial Tec s, Ii ding JRS ason fs, Pc gs.	Pav of w nalys Buil hniqu nflue bye-l ry, pintin	din ues Law
Control Devices: traffi Elements of Highwa surface characteristics, Highway Drainage: C design. Sub-surface dra Building Planning: Ir Basic Concepts of B Construction, Construct Climate on Building Planning of Residentia Building Construct Masonry,Partitions,Lir Plastering , Painting, V REFERENCE 1. Khanna, S.K., Roorkee - 2014 2. Kadiyali, L.R.	c signs, marki y Geometric , width conside Dbjects and re ainage system ntroduction, T uilding Eleme ction Manages lanning, Orier l Buildings, B ion:Foundation ttels, Stairs, D /arnishing And Justo, C.E.G. 4. ., `Traffic Eng	ngs, islands and signals. UNIT-II Design:Design controls and criteria.Cross Section and criteria.Cross Section	12 ection age sy 12 s of R e Buil al Bui ning , 12 Stone oring , in Bu	HOU Elem ents, stems HOU eside Iding Iding Build M Root ilding	JRS reints: right s – a JRS utial Tec s, Ii ding JRS ason fs, Pc gs.	Pav of w nalys Buil hniqu nflue bye-l ry, pintin	din ues Law
Control Devices: traffi Elements of Highwa surface characteristics, Highway Drainage: C design. Sub-surface dra Building Planning: Ir Basic Concepts of B Construction, Construct Climate on Building P Planning of Residentia Building Construct Masonry,Partitions,Lir Plastering , Painting, V REFERENCE 1. Khanna, S.K., Roorkee - 2014 2. Kadiyali, L.R. 3. Relevant IRC	c signs, marki y Geometric , width conside Dbjects and re ainage system ntroduction, T uilding Eleme ction Manage lanning, Orier l Buildings, B ion:Foundation ntels, Stairs, D /arnishing And Justo, C.E.G. 4. ., `Traffic Eng Publications.	ngs, islands and signals. UNIT-II Design:Design controls and criteria.Cross S erations for various components of cross sectio quirements of highway drainage. Surface drain s types and design. UNIT-III Types of Buildings Based on Occupancy, Type ents, Methods of Construction, Cost-effective ment Techniques, Site Selection for Resident thation of Building , Principles of Building Plan- uilding Services . UNIT-IV ons, Shallow and Deep Foundations, oors, Windows And Ventilators,Floors And Flo d Distempering, Etc. Acoustics, Fire Protection , and Veeraragavan, A., 'Highway Engineer gineering and Transport Planning', Khanna Pub	12 ection age sy 12 s of R e Buil al Bui uning , 12 Stone oring , i in Bu ng', N ishers,	HOU Elem ents, stems HOU eside Iding Build Build M Root ilding	JRS reints: right s – a JRS nitial Tec s, In ding JRS ason fs, Pc gs.	Pav of w nalys Buil hniqu nflue bye-l ry, ointin d and	zem zay. sis z ldin ues nce Law Br ng A
Control Devices: traffi Elements of Highway surface characteristics, Highway Drainage: C design. Sub-surface dra Building Planning: Ir Basic Concepts of B Construction, Construct Climate on Building P. Planning of Residentia Building Construct Masonry,Partitions,Lir Plastering , Painting, V REFERENCE 1. Khanna, S.K., Roorkee - 2014 2. Kadiyali, L.R. 3. Relevant IRC 4. "Building Dra	c signs, marki y Geometric , width conside Dbjects and re- ainage system ntroduction, T uilding Eleme ction Manage lanning, Orier l Buildings, B ion:Foundation tels, Stairs, D /arnishing And Justo, C.E.G. 4. ., `Traffic Eng Publications. wing'', Shah I	ngs, islands and signals. UNIT-II Design:Design controls and criteria.Cross S erations for various components of cross sectio quirements of highway drainage. Surface drain s types and design. UNIT-III Types of Buildings Based on Occupancy, Type ents, Methods of Construction, Cost-effective ment Techniques, Site Selection for Resident nation of Building , Principles of Building Plan- uilding Services . UNIT-IV ons, Shallow and Deep Foundations, oors, Windows And Ventilators,Floors And Flood d Distempering, Etc. Acoustics, Fire Protection , and Veeraragavan, A., 'Highway Engineer tineering and Transport Planning', Khanna Pub M.H and Kale C.M, Tata McGraw Hill Publish	12 ection age sy 12 as of R e Buil al Bui ning , 12 Stone oring , in Bu ng', N ishers, ng co.	HOU Elem ents, stems HOU eside ding lding lding Build M Root ilding	JRS ients: right s – a JRS Intial Tec s, Ii ding JRS ason fs, Pc gs. Chance ni – 2 New	Pav of w nalys Buil hniqu nflue bye-l ry, pintin d and 2007.	/em/ vay. sis a ldin ues nce Law Br: ng A
Control Devices: traffi Elements of Highway surface characteristics, Highway Drainage: C design. Sub-surface dra Building Planning: Ir Basic Concepts of B Construction, Construct Climate on Building P. Planning of Residentia Building Construct Masonry,Partitions,Lir Plastering , Painting, V REFERENCE 1. Khanna, S.K., Roorkee - 2014 2. Kadiyali, L.R. 3. Relevant IRC 4. "Building Dra	c signs, marki y Geometric , width conside Dbjects and re ainage system ntroduction, T uilding Eleme ction Manage lanning, Orier l Buildings, B ion:Foundation tels, Stairs, D Varnishing And Justo, C.E.G. 4. ., `Traffic Eng Publications. twing", Shah I astruction", Gu	ngs, islands and signals. UNIT-II Design:Design controls and criteria.Cross S erations for various components of cross sectio quirements of highway drainage. Surface drain s types and design. UNIT-III Types of Buildings Based on Occupancy, Type ents, Methods of Construction, Cost-effective ment Techniques, Site Selection for Resident thation of Building , Principles of Building Plan- uilding Services . UNIT-IV ons, Shallow and Deep Foundations, oors, Windows And Ventilators,Floors And Flood d Distempering, Etc. Acoustics, Fire Protection , and Veeraragavan, A., 'Highway Engineer gineering and Transport Planning', Khanna Pub M.H and Kale C.M, Tata McGraw Hill Publish trucharan Singh, Standard Publishers & distribu	12 ection age sy 12 as of R e Buil al Bui ning , 12 Stone oring , in Bu ng', N ishers, ng co.	HOU Elem ents, stems HOU eside ding lding lding Build M Root ilding	JRS ients: right s – a JRS Intial Tec s, Ii ding JRS ason fs, Pc gs. Chance ni – 2 New	Pav of w nalys Buil hniqu nflue bye-l ry, pintin d and 2007.	zem zay. sis z ldin ues nce Law Br ng A

Course Code	POS/C Os	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PS O1	PS O2	PS O3	PS O4
M18SE30	CO1	3	2		2	2	1		1			1	3	1	3	2
10	CO2	3	2		2	2	1		1			1	3	1	3	2
	CO3	3	2		2	2	1		1			1	3	1	3	2
	CO4	3	2		2	2	1		1			1	3	1	3	2